Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

12. 2. Способы защиты металлов от коррозии

12.2. Способы защиты металлов от коррозии

Все конструкционные и инструментальные материалы в большей или меньшей степени подвержены коррозионному действию внешней среды. Большая часть изделий в машиностроении изготовлена из сталей и чугунов, поэтому их защита от коррозии представляет наибольший интерес.

Существует много способов защиты металлов от коррозии. Выбор того или иного способа определяется конкретными условиями работы или хранения изделия. В настоящее время с целью увеличения срока службы изделий и обеспечения надёжности их работы применяют следующие способы защиты от коррозии: нанесение металлических и неметаллических покрытий, применение ингибиторов коррозии, химическая и электрическая защита.

Металлические покрытия широко применяются для защиты от коррозии деталей машин и приборов и различных металлоконструкций. При этом выбирают металл, обладающий достаточной стойкостью в данной среде. Нанесённые покрытия могут также повысить износостойкость отдельных деталей и изделия в целом.

Различают два типа металлических покрытий – анодное и катодное. При анодном покрытии изделие защищают металлом с большим отрицательным электродным потенциалом. Срок службы анодных покрытий возрастает при увеличении их толщины. Анодное покрытие защищает основной металл готовых изделий электрохимически. Для железоуглеродистых сплавов в качестве анодного покрытия может быть использован цинк или кадмий. Покрытие из цинка наносят также на медь, латунь, алюминий. Цинковые покрытия широко применяются для защиты листовой стали, а также водопроводных труб и различных резервуаров от действия воды и горячих жидкостей.

Катодные покрытия производят металлами, электродный потенциал которых в данном электролите выше потенциала основного металла. Катодные покрытия создают механическую защиту основного металла. Нарушение сплошности покрытия (например, механическое повреждение) влечёт за собой усиленную электрохимическую коррозию основного металла. Для сталей катодным покрытием может быть олово, медь, никель.

Металлические покрытия наносят различными способами. Наиболее часто применяют горячий метод, гальванизацию, металлизацию, а также напыление и плакирование.

При горячем методе изделие погружают в расплавленный металл, который смачивает его поверхность и покрывает тонким слоем. Затем изделие вынимают из ванны и охлаждают. Горячий способ применяют для нанесения тонкого слоя олова (лужение) или цинка (цинкование).

Лужение применяется в производстве белой жести, для покрытия внутренних поверхностей пищевых котлов и для других целей; цинкование – для проволоки, кровельного железа, труб.

Нанесение металлических покрытий гальваническим путём основано на физических законах о прохождении постоянного электрического тока через жидкую среду-электролит. При этом в качестве анода применяют металл, который необходимо нанести в качестве покрытия. Катодом служит изделие. При пропускании тока через электролит анод растворяется в электролите и наполняет его катионами, которые затем разряжаются на катоде (изделии). При гальванических покрытиях обеспечивается нанесение покрытия практически из любого металла на заготовки также из любого металла. Толщину гальванического покрытия можно регулировать в достаточно широких пределах.

Антикоррозионные покрытия могут наноситься путём распыления плазменной струёй расплавленного металла и нанесение его на защищаемую поверхность. Материалом покрытия могут быть металлы, оксиды, бороды, нитриды и другие соединения. Они могут применяться в виде проволоки, прутков или порошков. Аппараты для напыления называются металлизаторами. Преимуществами плазменного напыления является формование покрытий высокой плотности при хорошей сцепляемости с основанием.

Плакирование (термомеханическое покрытие) заключается в совместной горячей прокатке основного и защитного металлов. Сцепление между металлами осуществляется в результате диффузии под влиянием совместной деформации горячей заготовки. Защищаемый металл покрывают с одной стороны или с обеих сторон медью, медными сплавами, алюминием или нержавеющей сталью.

Неметаллические покрытия выполняются из лаков, красок, эмалей, смазок, пластмасс и других органических и неорганических веществ.

Наиболее распространённым способом защиты металлоконструкций, машин и механизмов в различных агрессивных средах являются лакокрасочные покрытия. Эти покрытия имеют значительные преимущества перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не влияют на свойства металла и являются сравнительно недорогими.

При правильном подборе лаков и красок и при соблюдении технологии их нанесения срок службы покрытий доходит до 5 лет.

Технологический процесс нанесения лакокрасочного покрытия включает подготовку поверхности, приготовление лакокрасочных материалов, нанесение покрытий и их сушку.

При длительном хранении и транспортировке металлические изделия покрывают специальными консервационными смазками и жирами. При необходимости смазки периодически обновляют.

Борьба с коррозией может вестись с использованием ингибиторов коррозии. Ингибиторами коррозии называют некоторые органические или неорганические соединения, которые вводят в небольших количествах в агрессивную среду, что способствует предотвращению или уменьшению скорости коррозии. Ингибиторы коррозии используют, например, для защиты различных трубопроводов, теплообменных аппаратов, нефтедобывающего и химического оборудования.

Химическая защита состоит в искусственном создании на поверхности изделия защитных оксидных или иных плёнок. Такие плёнки создаются при воздействии на металл сильных химических реагентов. Наведение оксидных плёнок называют оксидированием. Наиболее широко применяют оксидирование для защиты от коррозии алюминия, магния и их сплавов.

Читайте так же:
Как сделать пластиковую деталь

Кроме оксидных плёнок, на стальных изделиях наводят плёнки из фосфатов марганца и железа. Этот процесс называют фосфатированием. Получаемые при этом плёнки в сравнении с оксидными являются более прочными.

В отдельных случаях осуществляется электрохимическая защита металлов от коррозии при помощи протекторов. Протекторную защиту применяют для конструкций, соприкасающихся с электролитом. С этой целью к поверхности защищаемого изделия прикрепляют протекторы (пластины) из металла, имеющего в данный среде меньший электродный потенциал, чем потенциал основного металла. В результате образуется гальваническая пара, в которой анодом является протектор, а катодом – изделие. В таких условиях протектор будет постепенно разрушаться, защищая тем самым основной металл. После полного разрушения протектор заменяют.

Таким способом защищают, например, подводные части морских судов, прикрепляя к ним цинковые пластины. Катодную защиту применят также для подземных металлических сооружений (трубопроводов, кабелей и др.), которые присоединяют к отрицательному полюсу источника постоянного тока, а положительный полюс заземляют.

Следует заметить, что значительное повышение антикоррозионных свойств сталей достигается путём введения в их состав некоторых химических элементов. При оптимальном сочетании таких элементов, называемых легирующими, можно создать композиции, практически не корродирующие в данной среде. Так при введении в сталь 12% хрома достигается её антикоррозионность в атмосфере и других средах. Введение в сталь никеля повышает её кислотостойкость. Дополнительная присадка меди повышает антикоррозионность в кислых средах при повышенных температурах. Антикоррозионная защита металлов имеет большое народнохозяйственное значение, поскольку обуславливает надёжность и долговечность эксплуатации машин, механизмов, различных металлических сооружений (нефте- и газопроводов, железнодорожных мостов, опор линий электропередач и др.).

Вопросы для самопроверки

1. Назовите причины, вызывающие коррозию металлов. Приведите примеры вредного воздействия коррозии на элементы конструкций.
2. Поясните сущность химической и электрохимической коррозии металлов.
3. Назовите основные виды коррозионного разрушения металлов
4. Что является мерой коррозионной стойкости металлов?
5. Какие современные методы защиты металлов от коррозии вы знаете?
6. В чем сущность химической и электрохимической защиты металлов от коррозии.

Коррозия металлов.Способы защиты от коррозии

Коррозия – самопроизвольный процесс и соответственно протекающий с уменьшением энергии Гиббса системы. Химическая энергия реакции коррозионного разрушения металлов выделяется в виде теплоты и рассеивается в окружающем пространстве.

Коррозия приводит к большим потерям в результате разрушения трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и т. п. Безвозвратные потери металлов от коррозии составляют 15 % от ежегодного их выпуска. Цель борьбы с коррозией – это сохранение ресурсов металлов, мировые запасы которых ограничены. Изучение коррозиии разработка методов защиты металлов от нее представляют теоретический интерес и имеют большое народнохозяйственное значение.

Ржавление железа на воздухе, образование окалины при высокой температуре, растворение металлов в кислотах – типичные примеры коррозии. В результате коррозии многие свойства металлов ухудшаются: уменьшается прочность и пластичность, возрастает трение между движущимися деталями машин, нарушаются размеры деталей. Различают химическую и электрохимическую коррозию.

Химическая, коррозия – разрушение металлов путем их окисления в сухих газах, в растворах неэлектролитов. Например, образование окалины на железе при высокой температуре. В этом случае образующиеся на металле оксидные плёнки часто препятствуют дальнейшему окислению, предотвращая дальнейшее проникновение к поверхности металла как газов, так и жидкостей.

Электрохимической коррозией называют разрушение металлов под действием возникающих гальванических пар в присутствии воды или другого электролита. В этом случае наряду с химическим процессом – отдача электронов металлами, протекает и электрический процесс – перенос электронов от одного участка к другому.

Этот вид коррозии подразделяют на отдельные виды: атмосферную, почвенную, коррозию под действием «блуждающего» тока и др.

Электрохимическую коррозию вызывают примеси, содержащиеся в металле, или неоднородность его поверхности. В этих случаях при соприкосновении металла с электролитом, которым может быть и влага, адсорбируемая на воздухе, на его поверхности возникает множество микрогальванических элементов. Анодами являются частицы металла, катодами – примеси и участки металла, имеющие более положительный электродный потенциал. Анод растворяется, а на катоде выделяется водород. В то же время на катоде возможен процесс восстановления кислорода, растворённого в электролите. Следовательно, характер катодного процесса будет зависеть от некоторых условий:

кислая среда: 2Н + + 2ē = Н2 (водородная деполяризация),

нейтральная среда: O2+2H2O+4e − =4OH − (кислородная деполяризация).

В качестве примера рассмотрим атмосферную коррозию железа в контакте с оловом. Взаимодействие металлов с каплей воды, содержащей кислород, приводит к возникновению микрогальванического элемента, схема которого имеет вид

Более активный металл (Fе) окисляется, отдавая электроны атомам меди и переходит в раствор в виде ионов (Fe 2+ ). На катоде протекает кислородная деполяризация.

Читайте так же:
Как называется вырезание по дереву

Способы защиты от коррозии. Все методы защиты от коррозии можно условно разделить на две большие группы: неэлектрохимические (легирование металлов, защитные покрытия, изменение свойств коррозионной среды, рациональное конструирование изделий) и электрохимические (метод проектов, катодная защита, анодная защита).

Легирование металлов – это эффективный, хотя и дорогой метод повышения коррозионной стойкости металлов, при котором в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компонентов применяют хром, никель, титан, вольфрам и др.

Защитные покрытия – это слои, искусственно создаваемые на поверхности металлических изделий и сооружений. Выбор вида покрытия за- висит от условий, в которых используется металл.

Материалами для металлических защитных покрытий могут быть чистые металлы: цинк, кадмий, алюминий, никель, медь, олово, хром, серебро и их сплавы: бронза, латунь и т. д. По характеру поведения металлических покрытий при коррозии их можно разделить на катодные (например, на стали Cu, Ni, Ag) и анодные (цинк на стали). Катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. В случае анодного покрытия защищаемый металл играет роль катода и поэтому не корродирует. Но потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия. Так, покрытие стали оловом в растворе H2SO4 – катодное, а в растворе органических кислот – анодное.

Неметаллические защитные покрытия могут быть как неорганическими, так и органическими. Защитное действие таких покрытий сводится в основном к изоляции металла от окружающей среды.

Электрохимический метод защиты основан на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением к защищаемой конструкции (корпус судна, подземный трубопровод), находящейся в среде электролита (морская, почвенная вода), металла с более отрицательным значением электродного потенциала – протектора.

Контактная коррозия

Контактная коррозия металлов – это одно из часто встречающихся явлений, способных привести к их повреждению, потере эксплуатационных характеристик и полному разрушению.

Явление наблюдается, когда контактируют два металла, отличающиеся по электромеханическим свойствам.

Большинство рекомендаций по производству и эксплуатации металлоконструкций отмечают, что компоновать металлы нужно с учетом их совместимости.

Но это требование не всегда соблюдается.

Рассмотрим особенности коррозийного процесса и постараемся ответить на вопрос о том, какие материалы совмещаются между собой.

В зависимости от типа металлов, при контакте они ведут себя по-разному.

К примеру, контактная коррозия распространена при соприкосновении углеродистой стали и алюминия, меди и железа, цинка и алюминия. И это – только часть возможных сочетаний.

Иногда контактная коррозия наблюдается и в случае, если происходит контакт одинаковых металлов. Также появляются проблемы в месте соединения при сварке, по шву, из-за использования специальных присадочных проволок и других материалов.

Почему появляется контактная коррозия

Причина распространения коррозии – возникновение компромиссного потенциала. Он отличается по своим показателям от соприкасающихся металлов.

Активность металла

В итоге появляется пересечение анодной и катодной кривой.

В качестве анода выступает металл, у которого электроотрицательный потенциал выше, чем у другого. Электроположительный металл становится катодом.

Многое зависит и от типа электролита. Это приводит к тому, что увеличится скорость растворения и протекания процесса.

Стоит также учесть и скорость растворения анода. На нее влияет разность катодных и анодных потенциалов.

Значение также имеет уровень компромиссного потенциала. На него влияет тип металлов, которые вступают в контакт.

Есть и 4 внешних фактора, которые оказывают на него воздействие. К ним относятся такие, как:

  • Температура самого металла и среды, в которой он находится.
  • Уровень аэрации, доступ кислорода.
  • Особенности окружающей среды, степень загрязненности и типы рассеянных в воздухе частиц.
  • Уровень влажности, наличие прямого контакта с водой, постоянного намокания.

Процесс контактной коррозии развивается в различных средах. Это — открытый воздух, вода, почва.

Если при распространении коррозии, на материал неравномерно воздействует кислород, велика вероятность появления дифференциальной аэрации.

Это затрудняет катодную реакцию и влияет на саму интенсивность протекания процесса.

Особенности проявления катодной коррозии для разных типов металлов и сплавов

На особенности протекания коррозии влияет тип сплавов и металлов, которые контактируют друг с другом.

Все особенности сочетаний указаны в таблице ниже.

Тип металла

Сочетания

Примечания

Алюминий и оксидированные сплавы.

Магний и его оксидированные сплавы, прошедший пассивацию кадмий, разные типы стали – как окрашенной, так и оцинкованной, фосфатированной.

Допускается применение сочетаний с низким риском появления коррозии как в жестких, так и в средних условиях.

Магний и разные виды сплавов

Магний и сплавы, в том числе, при покрытии грунтом и лаком, анодированный алюминий и сплавы, сталь с хромовым покрытием, а также с нанесенным сверху цинком, кадмием, оловом и другими видами продукции.

Читайте так же:
Круг на болгарку по дереву фото

Допускается применение сочетаний с низким риском появления коррозии как в жестких, так и в средних условиях.

Медь и разные виды сплавов

Никель, олово, хром, золото, анодированный алюминий. Допускается применение припоя оловянно-свинцового типа. Допускается сочетание с разными вариантами сплавов анодированного алюминия, окрашенной или фосфатированной стали.

Допускается применение сочетаний с низким риском появления коррозии как в жестких, так и в средних условиях.

Ценные металлы -родий, серебро, палладий, золото

Все перечисленные виды металлов отлично сочетаются друг с другом с низким риском появления контактной коррозии. Можно также использовать изделия с оловом, никелем, алюминием, хромом и различными вариантами сплавов.

Сочетаются с разными вариантами стали, в том числе, хромникелевой, фосфатированной, окрашенной. В процессе обработки можно использовать в качестве припоя олово, а также его сочетание со свинцом. Среди других допустимых сочетаний – никель, анодированный алюминий и разные типы сплавов.

Среди допустимых сочетаний можно назвать никель, хром, олово, медь, припои из сплава свинца и олова. Сталь в контакте может быть покрытой цинковым слоем, окрашенной или анодированной, если планируется использование в контакте с морской водой. Можно также использовать такой вариант материала с золотом и серебром.

Одни из наиболее сочетаемых с другими разновидностями сырья. Список допустимых для контакта металлов очень большой – от золота, меди и сплавов до хрома, никеля, меди, цинка, кадмия и других.

Может соприкасаться с хромом, прошедшим процесс пассивации оловом, цинком, никелем, кадмием, припоем из олова и свинца. Сталь может быть как хромникелевой, так и хромистой, а также с дополнительным полимерным покрытием.

Меры предосторожности для недопущения развития контактной коррозии

Чтобы риск контактной коррозии металла снизился, нужно соблюдать 3 рекомендации. К ним относятся следующие:

  • Будьте осторожны с покрытиями. Это актуально в том случае, если планируется использовать изделие в районах с тропическим климатом и рядом с морем. Дополнительное покрытие не стоит наносить на участки деталей, где планируется сварка внахлест, установка заклепок из других видов сырья. Причина заключается в особенностях поведения электролита, когда коррозия значительно усиливается.
  • При проведении сварки и клепки деталей, покрытие нужно снимать. После того, как все работы проведены, сверху можно будет наносить полимерное покрытие для борьбы с негативным воздействием окружающей среды.
  • Не стоит использовать гальваническое покрытие в том случае, если перед вами деталь из черных или цветных металлов, прошедшие через литьевые формы.

Чтобы не допустить появления коррозии, всегда нужно понимать, с какими металлами вы работаете, и как они сочетаются друг с другом. Чтобы уменьшить степень интенсивности разрушения металла, нужно как можно скорее удалить соприкасающиеся отрезки сырья друг от друга.

Когда деталь используется в агрессивных средах, можно предусмотреть специальные прокладки. Хорошо справляется с задачей использования в морской воде магний и большинство его сплавов, цинк, алюминий и другие.

В качестве изоляции между элементами могут выступать металлические или полимерные лакокрасочные покрытия. Хорошим решением станут свинцовые детали.

Защитим ваши металлические изделия от коррозии

Наша компания выполняет задачи по проведению горячей оцинковки разных видов материалов. Среди преимуществ работы с нами есть такие, как:

  • Опыт работы с 2007 года. Регулярно сотрудничаем со многими постоянными клиентами.
  • Большая производственная база. У нас есть три цеха горячего цинкования. Мощность предприятия составляет 120 тысяч тонн в год.
  • Универсальность. Работаем даже со срочными заказами и любыми видами изделий. На предприятии установлена самая глубокая ванна в ЦФО. Ее глубина составляет 3,43 метра.
  • Качественное оборудование. Используем в обработке технику от таких крупных брендов, как KVK KOERNER и EKOMOR.

Мы гарантируем полное соответствие требованиям ГОСТ 9.307-89. Готовы ответить на все интересующие вас вопросы и быстро приступить к выполнению поставленной задачи.

Катодная защита автомобиля

Несмотря на широкое распространение метода катодной защиты металлических конструкций в серьезных отраслях промышленности (энергетика, трубопроводы, кораблестроение), устройств, предназначенных для легковых автомобилей, в русскоязычном секторе сети представлено мало.

катодная защита автомобиля от коррозии

Катодная защита автомобиля от коррозии в разговорах бывалых водителей давно превратилась в нечто таинственное и обросла слухами. У нее есть как яростные приверженцы, так и скептики. Выясним, о чем идет речь.

Суть катодной защиты

Главным врагом автомобиля, ограничивающим срок его службы, становятся вовсе не механические поломки, а общее ржавление металлического корпуса. Процесс коррозии железа, из которого сделана машина, невозможно свести к какой-то единичной химической реакции.

Напыляемая звукоизоляция коррозии

Напыляемая звукоизоляция коррозии

Разрушение металла, превращение его в безобразные рыжие пятна ржавчины, происходит в результате сочетания разнообразных факторов:

  • особенности климата, в котором эксплуатируется автомобиль;
  • химический состав воздуха, водяного пара и даже почв в районе (влияют на свойства дорожной грязи);
  • качество материала кузова, наличие ударов и повреждений, проведенные ремонты, используемые защитные покрытия и десятки иных причин.
Читайте так же:
Как проверить шим сигнал

В самых общих чертах суть процессов коррозии машины можно объяснить таким образом.

Что такое коррозия железа

Всякий металл по структуре представляет собой кристаллическую решетку из положительно заряженных атомов и общего электронного облака, окружающего их. В пограничном слое электроны, обладающие энергией теплового движения, вылетают из решетки, но тут же притягиваются обратно положительным потенциалом поверхности, которую покинули.

Коррозия кузова автомобиля

Коррозия кузова автомобиля

Картина меняется, если металлическая поверхность контактирует со средой, способной переносить электроны, – электролитом. В этом случае покинувший кристаллическую решетку электрон продолжает движение во внешней среде и больше не возвращается. Для этого на него должна действовать некая сила – разность потенциалов, которая появляется, если электролит связывает проводимостью два разных металла с различными свойствами. От его величины зависит, какой из двух металлов станет терять электроны, являясь положительным электродом (анодом), а какой – принимать (катодом).

Возможности предотвратить коррозию

Вокруг способов защитить свою машину от ржавчины в водительском сообществе есть много народных мифов. В реальности возможны два пути:

  • Оградить поверхность металла кузова от контакта с электролитами – водой, воздухом.
  • Внешним источником энергии изменить потенциал поверхности так, чтобы железный кузов из анода превратился в катод.

Первая группа методов – это разнообразные защитные антикоррозионные покрытия, грунтовки и лакокраска. Хозяева машин тратят серьезные деньги, но стоит понимать: таким путем коррозию не прекратить. Только затрудняется доступ активного реагента к кузовному железу.

Антикоррозийная обработка автомобиля

Антикоррозийная обработка автомобиля

Электрохимические технологии защиты можно разделить на две технологии:

  • Используя внешний источник электричества (аккумуляторную батарею авто), с помощью специальной схемы создать избыток положительного потенциала на кузове, чтобы электроны не покидали металл, а притягивались в него. Это – катодная защита автомобиля.
  • Разместить на кузове элементы из более активного металла, чтобы создать гальваническую пару, в которой тот станет анодом, а корпус автомобиля – катодом. Этот метод вообще не нуждается в подключении к батарее и называется протекторной, или анодной, защитой.

Рассмотрим каждый из способов.

Как выбрать анод

В роли внешнего контура можно с успехом применить металлические поверхности гаража, заземляющий контур на стоянке и другие средства.

Металлический гараж

Через провод с разъемом плату прибора катодной защиты подключают к нему и создают необходимую разность потенциалов. Такой способ неоднократно доказал высокую эффективность.

Контур заземления

Если машина паркуется на открытой площадке, внешний контур для гальванической защиты может быть создан по периметру ее стоянки. В землю вбиваются металлические штыри аналогично обычному заземлению и соединяются в единый замкнутый контур проводкой. Автомобиль размещается внутри этого контура и подключается к нему через разъем так же, как в способе с гаражом.

Металлизированный резиновый хвост с эффектом заземления

Такой способ реализует идею о создании необходимого электроположительного потенциала кузова относительно поверхности дороги. Метод хорош тем, что работает не только при стоянке, но и в движении, защищая машину именно тогда, когда она особенно уязвима к влаге и дорожной химии.

Защитные электроды-протекторы

В качестве электродов, создающих защитный потенциал, используют пластины из стали, состав которой близок к металлу самого кузова. Это нужно для случаев, если произойдет поломка прибора, чтобы размещенные пластины сами не стали очагом коррозии, создав новую гальваническую пару. Площадь каждой пластины оптимальна в размере от 4 до 10 см 2 , форма – прямоугольная или овальная.

Как смонтировать защиту

Один отдельный электрод создает вокруг себя область защитного потенциала в радиусе 0,3-0,4 метра. Поэтому на полное оборудование автомобиля средней величины понадобится от 15 до 20 таких пластин.

Электронная антикоррозийная защита авто

Электронная антикоррозийная защита авто

Размещают электроды в наиболее уязвимых для атмосферной коррозии местах:

  • на днище машины;
  • в арках передних и задних колес;
  • на полу салона под ковриками;
  • на внутренних частях дверей снизу.

Необходимо исключить возможность контакта соединенных на плюс АКБ пластин электродов с минусом корпуса авто. Для этого их монтируют на эпоксидный клей поверх имеющегося на кузове лакокрасочного или антикоррозионного покрытия.

Какие приборы используются

Несмотря на широкое распространение метода катодной защиты металлических конструкций в серьезных отраслях промышленности (энергетика, трубопроводы, кораблестроение), устройств, предназначенных для легковых автомобилей, в русскоязычном секторе сети представлено мало. Те немногие, что удается найти, сложно проверить по тестам и отзывам, поскольку достаточного набора данных продавцы не приводят. Устройство катодной защиты авто представлено моделями RustStop-5, БОР-1, АКС-3, УЗК-А.

Читайте так же:
Как подключить электродвигатель 220 вольт через конденсатор

Запатентованный в США и Канаде прибор FINAL COAT действует по принципу импульсного тока и сопровождается данными исследований. Согласно тестам, это устройство показало реальную эффективность защиты стальных поверхностей кузова при разности потенциалов 100-200 мВ более чем на 400%, чем контрольный образец. Останавливает лишь цена прибора, который сейчас можно купить за 25 тысяч рублей.

Как сделать устройство для катодной защиты самому

Если не ставить перед собой цель изготовления системы со сложными блокировками от короткого замыкания, слежением за расходом заряда батареи, светодиодной индикацией, то само устройство можно элементарно изготовить и самому.

Катодная защита кузова (схема)

Простейший вариант включает лишь разгрузочный резистор определенного номинала (500-1000 ом), через который плюсовая клемма аккумулятора соединяется с защитными электродами. Потребляемый ток должен находиться в интервале 1-10 мА. Защитный потенциал теоретически достаточен в размере 0,44 В (величина электроотрицательного потенциала чистого железа). Но с учетом сложного состава стали, наличия дефектов кристаллической структуры и иных действующих факторов принимается в районе 1,0 В.

Отзывы об эффективности катодной защиты

Сообщения пользователей приборов дают разные оценки.

«Прочитав про катодную защиту кузова автомобиля от коррозии своими руками, решил попробовать. Нашел в интернете номиналы радиодеталей, подобрал подходящие пластины для анодов, все подключил как написано. Результат: пользуюсь больше пяти лет, машина у меня не новая, но сквозной ржавчины еще нет».

«Электрохимическая защита досталась вместе с машиной, когда покупал с рук. Кузов действительно держится как нержавейка, зато сильно сгнили сами пластины на днище. Нужно будет разобраться, как и на что их менять».

Другие способы защиты

Кроме катодной защиты авто от коррозии, в народе популярны разные альтернативные методы. Не все они одинаково хороши, но помогают продлить срок службы машины на несколько лет.

Анодная методика

Применяются специально изготовленные особой формы детали из металлов с более высоким электродным потенциалом, чем у железа. В результате при возникновении гальванической пары растворяется именно эта деталь – расходный электрод. Металл же самого кузова практически не страдает. Этот способ – анодная защита авто от коррозии.

Анодная защита авто от коррозии

Анодная защита авто от коррозии

Чаще всего применяют накладки из цинка или сплавов магния. Многочисленные отзывы водителей, ставивших в колесные ниши куски цинка, подтверждают действенность этого способа защиты на 3-5 лет. Недостаток способа – необходимость следить за протекторными электродами, при необходимости обновляя их.

Оцинковка кузова

Покрытие металла кузова цинком – еще один распространенный прием защитить машину от ржавчины на весь период ее службы (часто на 15-20 лет). Этим путем пошли крупнейшие западные производители, выпуская премиальные марки своих автомобилей с заводской горячей оцинковкой кузовов.

Оцинковка кузова

Безусловным лидером в этом направлении является Audi, разработавшая много патентов на тему технологий защитного покрытия. Именно модель Audi 80 – первый серийный образец с такой обработкой, а начиная с 1986 года ее имеют все производимые под этим брендом машины. Другие участники концерна VW Group также используют горячую оцинковку: «Фольксваген», «Шкода», «Порше», «Сеат».

Кроме немецких, настоящую оцинковку кузовов получили некоторые японские модели: «Хонда Аккорд», «Пилот», «Легенд».

Грунтовки и лакокрасочные материалы

Применительно к теме электрохимической защиты, упоминания заслуживают протекторные составы лакокрасочных материалов, содержащие частички цинка. Это фосфатирующие и катафорезные грунты.

Нанесение лакокрасочных материалов

Нанесение лакокрасочных материалов

Принцип их действия тот же: создается контакт железа со слоем более активного металла, который и расходуется в гальванических реакциях в первую очередь.

Ламинирование

Метод защиты поверхности кузова от ржавчины и абразивного истирания путем оклейки специальной прочной прозрачной пленкой. Хорошо проведенная обработка практически не видима глазу, выдерживает значительные перепады температур и не боится вибрации.

Ламинирование авто

Жидкое стекло

Создается дополнительный упрочняющий слой покрытия поверх базового лакокрасочного, обладающий повышенной прочностью. Наносится на обезжиренный и промытый кузов машины, который предварительно нагревают горячим воздухом. Полимерная основа материала растекается и после затвердевания полируется. Таким способом удается уберечь заводской слой краски от проникновения сквозь него атмосферной влаги и этим на небольшое время сдержать коррозию.

Керамика жидкое стекло для авто

Керамика жидкое стекло для авто

Полной защиты от ржавчины метод не дает. Защищает в основном внешний вид автомобиля от видимых проявлений, но оставляя без внимания скрытые очаги.

Работа с днищем

Чтобы уберечь днище и колесные арки от попадания электролитов (дорожная грязь, вода с солью), применяются покрытия различными мастиками на битумной, каучуковой и полимерной основе.

Работа с днищем авто

Работа с днищем авто

Используются локеры (подкрылки) из полиэтилена. Все эти виды обработки проигрывают по эффективности электрохимической защите кузова автомобиля, но позволяют на время отсрочить сквозную ржавчину.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector