Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая защита асинхронных электродвигателей

Электрическая защита асинхронных электродвигателей

Электрическая защита асинхронных электродвигателей

Самым распространенным видом электродвигателей бесспорно можно назвать трёхфазные электродвигатели переменного тока, напряжение которых составляет до 500 В при мощностях от 0,05 до 350 — 400 кВт.

Так как требуется обеспечить бесперебойное и надежное функционирование электродвигателей, то наибольшее внимание в первую очередь следует уделить выбору электродвигателей по режиму работы, номинальной мощности и форме исполнения. Нужно не забывать о том, что немалое значение имеет соблюдение требований и необходимых правил во время разработки принципиальной электрической схемы, подборе пускорегулирующей аппаратуры, кабелей и проводов, эксплуатации и монтаже электропривода.

Работа электродвигателей в аварийных режимах

Как известно, даже в случае, если электроприводы спроектированы в соответствии со всеми нормами и эксплуатируются с соблюдением всех правил, то все равно при их работе всегда остается пусть небольшая, но все-таки вероятность появления аварийных режимов или режимов, которые характеризуются ненормальной работой для двигателей и другого электрооборудования.

Среди различных аварийных режимов можно перечислить следующие:

1. Короткие замыкания, которые в свою очередь делятся на:

  • короткие замыкания, которые происходят в обмотках электродвигателя. Они могут быть однофазными и многофазными, а именно двухфазными и трехфазными;
  • многофазные короткие замыкания, которые происходят в выводной коробке электродвигателя и во внешней силовой цепи (например, в ящиках сопротивлений, на контактах коммутационных аппаратов, в проводах и кабелях);
  • короткие замыкания фазы на нулевой провод или корпус во внешней цепи (в электросетях с заземленной нейтралью) или внутри двигателя;
  • короткие замыкания, возникающие в цепи управления;
  • короткие замыкания, возникающие в обмотке двигателя между витками. Этот тип замыканий часто называют витковыми замыканиями.

Короткие замыкания, возникающие в электроустановках, считаются самым опасным типом аварийных режимов из всех существующих. Как правило, чаще всего они появляются по причине перекрытия изоляции или пробоя. Токи короткого замыкания могут достичь таких амплитуд, которые в десятки и сотни раз превышают значения токов при нормальном режиме работы. Тепловое воздействие и динамические усилия, вызванные токами короткого замыкания, которым подвергаются токоведущие части, способны вывести из строя всю электроустановку целиком.

2. тепловые перегрузки электродвигателя, которые появляются из-за того, что по его обмоткам происходит прохождение повышенных токов. Это может происходить в следующих ситуациях:

  • когда по различным технологическим причинам происходят перегрузки рабочего механизма;
  • когда имеют место быть при застопоривании или, наоборот, пуске двигателя под нагрузкой особо тяжелые условия;
  • когда случается длительное понижение напряжения сети;
  • когда произошло выпадение одной из фаз внешней силовой цепи;
  • когда в обмотке электродвигателя случился обрыв провода;
  • когда имели место быть механические повреждения в рабочем механизме или в самом двигателе;
  • когда по причине ухудшения условий охлаждения двигателя произошли тепловые перегрузки.

Тепловые перегрузки отрицательно сказываются на работе электродвигателя. Главной причиной этого является то, что они вызывают ускоренное разрушение и старение изоляции двигателя, что в свою очередь влечет частое возникновение коротких замыканий. То есть все это приводит к серьезным авариям и слишком быстрому выходу двигателя из строя.

Виды защиты электродвигателей асинхронного типа

Для защиты электродвигателей от различных повреждений, возникающих во время работы двигателя в условиях, отличных от нормальных, разрабатываются всевозможные средства защиты. Один из принципов, применяемый в таких средствах защиты, предусматривает своевременное отключение неисправного двигателя от сети, ограничивая, тем самым, или полностью предотвращая развитие аварии.

Основным и самым действенным средством бесспорно считается электрическая защита двигателей, которая соответствуем требованиям ПУЭ (нормативный документ, «Правила устройства электроустановок»).

Если за основу классификации взять характер ненормальных режимов работы и повреждений, которые могут возникнуть, то можно назвать несколько основных наиболее часто встречающихся типов электрозащиты для двигателей асинхронного типа.

Защита электродвигателей асинхронного типа от коротких замыканий

Когда в главной силовой цепи электродвигателя или в цепи управления токов появляется аварийный режим короткого замыкания, то происходит отключение двигателя. В этом и заключается защита от короткого замыкания.

Срабатывание всех аппаратов, которые используются для осуществления защиты электродвигателей асинхронного типа от коротких замыканий, происходит практически мгновенно, без задержки во времени. К таким аппаратам относятся, например, предохранители плавкие, реле электромагнитные, выключатели автоматические с расцепителем электромагнитного типа.

Читайте так же:
Конус сверла по металлу

Защита электродвигателей асинхронного типа от перегрузок

Благодаря наличию защиты от перегрузки двигатель предохраняется от чрезмерного перегрева, возникающего, в частности, при относительно малых по величине, но растянутых во времени тепловых перегрузках. Защиту от перегрузки нужно использовать только для электродвигателей не всех рабочих механизмов, а только тех, у которых возможны ненормальные скачки нагрузки в случае нарушения стандартного рабочего процесса.

Аппараты, которые разработаны с целью защитить сеть от перегрузки, например, электромагнитные реле, температурные и тепловые реле, автоматические выключатели с часовым механизмом или с тепловым расцепителем, в случае возникновения перегрузки способствуют отключению двигателя. При этом такое отключение происходит с определенной конкретной выдержкой времени. Выдержка прямо пропорционально зависит от величины перегрузки. Иными словами, чем больше перегрузка, тем меньше выдержка, и наоборот. Иногда даже происходит мгновенное отключение, это происходит при существенных перегрузках.

Защита электродвигателей асинхронного типа от понижения уровня напряжения или его исчезновения

Защиту от понижения уровня напряжения или его исчезновения также часто называют нулевой защитой. Выполняемая с помощью нескольких (или одного) электромагнитных аппаратов, защита подобного рода отключает электродвигатель при снижении уровня напряжения сети ниже минимально допустимого (возможно установить требуемый уровень минимально допустимого напряжения самостоятельно) значения или при перебоях напряжения питания, а также защищает электродвигатель от самопроизвольного включения после обеспечения допустимого напряжения в сети или устранения перерыва питания.

Для режима работы электродвигателей асинхронного типа на двух фазах также существует защита. Срабатывая, она отключает двигатель, тем самым защищая его от «опрокидывания» (остановка под током из-за понижения момента, развиваемого двигателем, в случае обрыва линий электропитания в одной из фаз главной цепи) и от перегрева.

Электромагнитные и тепловые реле применяются в качестве аппаратов защиты двигателей асинхронного типа. При использовании электромагнитного реле защита может не иметь выдержки времени.

Другие виды электрической защиты электродвигателей асинхронного типа

Не менее эффективные, но реже используемые средства защиты также существуют. Они применяются для защиты от однофазных замыканий на землю в IT сетях (у которых нейтраль изолирована), от повышения уровня напряжения, от увеличения скорости вращения привода и т.п.

Электрические аппараты, применяемые для защиты электродвигателей

В зависимости от функциональной сложности аппараты для электрической защиты электродвигателей асинхронного типа могут применяться для предохранения от одного или нескольких одновременно типов угроз. Защиту от коротких замыканий или перегрузок обеспечивают различные автоматические выключатели. Бывают аппараты защиты однократного или многократного действия. К первым относятся, например, плавкие предохранители. Их недостатком можно считать то, что после выполнения своей функции, такие средства защиты подлежат замене и не могут использоваться повторно. Более подходящими могут оказаться перезаряжаемые средства защиты однократного действия. Что касается аппаратов многократного действия, они отличаются способом возврата в состояния готовности на два типа: с ручным возвратом и автоматическим. Примером таких устройств служат тепловые и электромагнитные реле.

Выбор вида электрической защиты электродвигателей асинхронного типа

Для каждого электродвигателя асинхронного типа необходимо выбирать подходящий ему вид электрической защиты. Нужно учитывать условия работы, степень важности привода, его мощность и порядок обслуживания электродвигателя в целом (наличие закрепленного за двигателем сервис-инженера). Может быть выбран как один, так и сразу несколько видов защиты электродвигателей.

Хорошая защита – это та, которая в итоге окажется надежной и простой в эксплуатации. Для грамотного подбора вариантов защиты необходимо провести аудит электрооборудования. Особенное внимание следует уделить данным, касающимся аварийности оборудования в мастерских, на строительных площадках, в цехах и т.д. В результате подобного анализа будет выявлено множество нарушений нормальной работы технологического оборудования и электродвигателей, что позволит подобрать наиболее соответствующее ситуации средство электрической защиты двигателя.

Защита электродвигателей асинхронного типа от коротких замыканий обязательно должна быть предусмотрена вне зависимости от его характеристик (напряжения и мощности). В данном случае защиту нужно организовать комплексным путем в два приема. В одном случае будет необходимо обеспечивать защиту при значениях тока меньших, чем значения пусковых токов. Это подходит в некоторых случаях возникновения коротких замыканий, например замыкания на корпус внутри двигателя или при витковых замыканиях. Во втором случае защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток

Читайте так же:
Как прозвонить обмотку статора генератора

Наиболее доступные и функционально простые средства защиты не позволят одновременного выполнения этих приемов. Поэтому защита с применением подобного рода аппаратов всегда строится на основании сознательного допущения, что при возникновении вышеуказанных повреждений в двигателе, он отключится не мгновенно, а постепенно, причем при условии дальнейшего развития подобных повреждений, когда ток, потребляемый двигателем из сети, возрастет многократно.

Все аппараты электрической защиты двигателей должны быть тщательным образом отрегулированы и правильно подобраны с учетом всех особенностей в каждом конкретном случае. Не допускается, чтобы средства защиты выдавали ложное срабатывание.

Защита электродвигателя от перегрузки

Usach

Просмотр профиля

дважды крещёный пионер

Группа: Участники форума
Сообщений: 4629
Регистрация: 13.7.2008
Из: г.Новосибирск
Пользователь №: 20580

У насоса ничего нет.
А как монитор напряжения сети отреагирует на то, что питание будет однофазным? Есть импортные аналоги? Посмотрел схему. температуру он измеряет при помощи термодатчика. а вот куда его утсанавливать? Я ведь не смогу встроить его в обмотки элеткродвигателя.

Сообщение отредактировал Max2114 — 26.11.2010, 12:17

vlad980

Просмотр профиля

Группа: Участники форума
Сообщений: 288
Регистрация: 19.12.2009
Пользователь №: 42881

Как вариант для однофазных — есть такие штуки — Thermal Circuit Breakers
— типа, тепловой расцепитель, в природе встечаются на разные токи и с разными характеристиками..

Самый простой вариант этого устройства — на фото

____373.jpg ( 138,86 килобайт ) Кол-во скачиваний: 190

Сообщение отредактировал vlad980 — 26.11.2010, 12:49

ARTEM_1

Просмотр профиля

Группа: Участники форума
Сообщений: 133
Регистрация: 21.8.2008
Из: Воскресенск
Пользователь №: 21694

Usach

Просмотр профиля

дважды крещёный пионер

Группа: Участники форума
Сообщений: 4629
Регистрация: 13.7.2008
Из: г.Новосибирск
Пользователь №: 20580

Если SSM-ок нет, значит устойчив к перегрузкам. Т.е. при превышении рабочего тока, нагрев обмотки не приведёт к её выходу из строя (т.к. мощность насоса мала по сравнению с "намотоным" статором). Т.е. "разогреть" обмотку серьёзно не получится. Там ведь исчо и кондёр фазосмещающий стоит. Перекоса фаз нет по-определению. А от КЗ тепловуха всё равно не спасёт. Остаётся предохранится от "реальности", при которой у нас — в "Матрице"- запросто линейное вместо фазного подадут. Для этого МНС и нужен.

Кстати 1,5кВт — что то не похоже чтоб SSM было. Там же минимум 7,5А рабочий ток. Марку насоса — в студию!!

Сообщение отредактировал Usach — 26.11.2010, 13:11

pogarka

Просмотр профиля

Группа: Участники форума
Сообщений: 69
Регистрация: 25.4.2009
Пользователь №: 32699

как вариант могу предложить
Автоматические выключатели защиты двигателей Z-MS производства Moeller
Надежная защита двигателя от перегрузки с возможностью регулирования установки теплового расцепителя
http://ellux.ru/item/212/

еще как вариант устанавливается, если его нет в комплекте, или термисторный или биметаллический датчик перегрева двигателя в каробке где подключаются силовые кабеля, и включаетсяв цепь управлнеия.
дешево и сердито.

mikesork

Релейная защита электродвигателя

Согласно правилам устройства электроустановок (ПУЭ) на двигателях напряжением выше 1000В должны устанавливаться следующие устройства релейной защиты:

  • защита от междуфазных коротких замыканий;
  • защита от замыканий на землю;
  • защита от двойных замыканий на землю;
  • защита от перегрузки.

Для синхронных двигателей дополнительно требуется защита от асинхронного режима. Применяемые для этой цели виды релейной защиты зависят от мощности электродвигателей:

В качестве защиты от междуфазных КЗ при мощности двигателей до 5000 кВт применяется токовая отсечка, она может применяться и для двигателей большей мощности, не имеющих фазных выводов со стороны нейтрали двигателя. При двигателях большей мощности, а также, если токовая отсечка для двигателей меньшей мощности не удовлетворяет требованиям чувствительности, применяется дифференциальная защита при условии, что эти двигатели имеют выводы со стороны нейтрали.

В качестве защиты от замыканий на землю при токах замыкания более 5 А для двигателей более 2000 кВт и 10А для двигателей меньшей мощности применяется токовая защита нулевой последовательности, действующая на отключение. На линиях, питающих двигатели передвижных механизмов, защита от замыканий на землю, по соображениям электробезопасности, должна действовать на отключение независимо от величины тока замыкания на землю. На блоках трансформатор-двигатель защита от замыканий на землю действует на сигнал.

Читайте так же:
Как сверлить кафельную плитку на стене

Для защиты от двойных замыканий на землю применяется токовая защита нулевой последовательности, действующая на отключение. Она применяется в тех случаях, когда зашита от замыканий на землю имеет выдержку времени. Ее применение обязательно, если защита от междуфазных КЗ выполняется в двухфазном варианте.

Защита от перегрузки требуется для двигателей, подверженных перегрузке по технологическим причинам, или с особо тяжелыми условиями пуска. Защиту от перегрузки можно выполнять с зависимой или независимой выдержкой времени. Она может действовать на разгрузку механизма по технологическим цепям или на сигнал — первая ступень и на отключение — вторая. Выдержка времени защиты от перегрузки при токе, равном пусковому току двигателя, выполняется большей времени его пуска. При таком выполнении защиты двигателя имеется значительный тепловой запас. Это дает возможность выполнить действие такой защиты от перегрузки на разгрузку механизма.

Согласно ПУЭ на двигателях мощностью менее 5000 кВт можно иметь токовую отсечку, токовую защиту от замыканий на землю, защиту от перегрузки. Существуют специальные защиты от перегрузки с зависимой от величины характеристикой, совпадающей с тепловой характеристикой.

Защита от асинхронного режима для синхронных двигателей может действовать по току перегрузки с независимой выдержкой времени. Для двигателей с ОКЗ более 1,0 может быть применена защита с зависимой характеристикой. Режим асинхронного хода сопровождается перегрузкой двигателя, и на него реагируют защиты от перегрузки. Простые токовые защиты могут срабатывать и возвращаться при колебаниях тока. Поэтому защиты от перегрузки в асинхронном режиме должны накапливать выдержку времени. Можно использовать две ступени защиты от перегрузки: ступень с меньшей выдержкой времени действует на ресинхронизацию, а с большей – на отключение.

Специальные защиты от потери возбуждения имеются в устройствах возбуждения крупных двигателей. Эти устройства целесообразно использовать для автоматической ресинхронизации. Для облегчения условий самозапуска, а также для предотвращения подачи несинхронного напряжения на возбужденные синхронные двигатели или заторможенные механизмы двигатели должны быть оборудованы защитой минимального напряжения. Эта защита может быть либо индивидуальной, либо групповой. В ряде случаев для ускорения подачи напряжения на шины или предотвращения подачи напряжения на двигатели автоматикой внешней сети синхронные двигатели могут быть дополнительно оборудованы зашитой по понижению частоты, так как они способны длительно поддерживать напряжение в сети.

Кроме перечисленных, обязательных функций защиты, специальные защиты для двигателей имеют дополнительные функции, использование которых улучшает условия эксплуатации двигателя. К ним относятся:

  • зашита от обрыва фазы;
  • ограничение количества пусков;
  • запрет пуска по времени прошедшего от предыдущего пуска;
  • зашита минимального тока или мощности;
  • заклинивание или затормаживание ротора.

Специальные устройства защиты двигателей могут работать не только с током и напряжением, но и с датчиками температуры.

У двигателей большой мощности существуют также технологические защиты, которые могут действовать на отключение двигателей; повышение температуры двигателя, его подшипников, прекращение смазки подшипников, циркуляция воздуха в системе охлаждения. Необходимость этих защит и предъявляемые к ним требования излагаются в заводской документации.

Токовая защита от многофазных замыканий в обмотке статора двигателя

Защиты от многофазных замыканий в обмотке статора должны срабатывать по возможности с минимальным временем. Для этой цели используется максимальная токовая защита с зависимой или независимой выдержкой времени. При этом для быстрого отключения при сверхтоках короткого замыкания используется токовая отсечка, отстраиваемая от максимального значения пускового тока в момент включения двигателя. Остальной диапазон возможных токов коротких замыканий перекрывается ступенями МТЗ с независимой (зависимой) выдержкой времени.

Функция динамического переключения параметров (уставок) защиты обеспечивает ее загрубление на определенное время (при включении электродвигателя после предшествующей паузы) и тем самым позволяет повысить чувствительность к коротким замыканиям. При этом генерируется сигнал наличия предшествующей паузы в подаче напряжения, и переключаются уставки МТЗ, чем обеспечивается блокировка защиты во время последующего пуска двигателя.

Дифференциальная защита электродвигателя

Дифференциальная защита применяется ка двигателях сравнительно большой мощности, а также в случаях, когда МТЗ к токовая отсечка не обеспечивают необходимую чувствительность к внутренним междуфазным коротким замыканиям, ввиду необходимости отстройки от пусковых токов.

Читайте так же:
Как разобрать перфоратор штурм

Защита электродвигателя от замыканий на землю в обмотке статора

Защиты от замыканий на землю в обмотке статора зависят от вида заземления нейтрали сети. В сетях с большим током КЗ на землю (сеть с глухозаземленной нейтралью) применяется токовая защита, реагирующая на ток нулевой последовательности (3I). Так как ёмкость обмотки намного меньше ёмкости сети, можно использовать ненаправленные токовые защиты нулевой последовательности. В особых случаях, при соизмерительности ёмкости двигателя и электрической сети необходимо использование направленной токовой земляной защиты.

Защита электродвигателя по току обратной последовательности

Ток обратной последовательности (I2) в обмотке статора возникает при несимметричном питании, при обрыве фазы обмотки статора, при несимметричном коротком замыкании. Как электрическая машина с вращающимся ротором, двигатель имеет значительно меньшее сопротивление для составляющих токов обратной последовательности. Поэтому составляющая тока обратной последовательности, возникающая в обмотке ротора и имеющая более высокую частоту ввиду обратного направления вращения относительно поля статора, приводит к увеличению тепловых потерь и разогреву двигателя. Принцип выполнения защиты основан на измерении симметричных составляющих рабочего тока.

Защита электродвигателя от снижения напряжения питания

Устойчивость работы двигателя зависит от значения и длительности снижения напряжения. Для этой цели используются защиты с контролем глубины снижения напряжения, которые могут иметь ступени по напряжению как с независимой выдержкой времени, так и с выдержкой времени, зависящей от глубины снижения напряжения. Данная защита должна автоматически выводиться из действия при отключении двигателя или при неисправности цепей напряжения.

Защита электродвигателя от тепловой перегрузки

Защита от тепловой перегрузки может быть выполнена на основе использования МТЗ с зависящей от тока выдержкой времени или на основе дифференциального уравнения нагрева двигателя.

Зашита электродвигателя от потери синхронизма

Традиционный способ выполнения защиты двигателя от потери синхронизма – фиксация периодических колебаний тока статора. Другим критерием может являться потребление синхронным двигателем в асинхронном режиме сравнительно большого тока с низким коэффициентом мощности (cosφ)

Автоматический выключатель для защиты электродвигателя — как правильно подобрать?

Автомат для защиты электродвигателя

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Автомат защиты асинхронного двигателя

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

  • Отключение установки, если нагрузка перестала подаваться на вал.
  • Защита силового агрегата от долгих перегрузок.
  • Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
  • Индикация рабочих режимов, а также оповещение об аварийных состояниях.

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Читайте так же:
Как правильно установить кондиционер дома

Все части схемы тщательно подбираются друг к другу

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Характеристики АВ указываются на корпусе или в паспорте

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (Inт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Модульный автоматический выключатель для двигателя

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

График процесса самозапуска электродвигшателя

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector