Tehnik-ast.ru

Электро Техник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Научный журнал Современные наукоемкие технологии ISSN 1812-7320 Перечень ВАК ИФ РИНЦ 0,899

Ввиду тугоплавкости и высокой химической стойкости

Термостойкая керамика характеризуется прочностью, твердостью, химической стойкостью и в первую очередь способностью без разрушения и с сохранением значений эксплуатационных свойств выдерживать напряжения, возникающие в материале при резких перепадах температур во время многократного нагрева до высоких температур с последующим охлаждением. Изделия из термостойкой керамики используют при футеровке печей и топок, в производстве различного рода огнеприпаса, изоляторов в электронагревательных устройствах и при изготовлении пьезоэлектрических датчиков. В последнее время термостойкая керамика начинает всё более широко использоваться в производстве изделий для различных отраслей машиностроения, в том числе для двигателей внутреннего сгорания и газовых турбин, в станкостроении, электронике, энергетике, авиационной и авиакосмической промышленности [1–3]. Наряду с перечисленными областями применения изделия из термостойкой керамики используются и в бытовой сфере как для футеровки тепловых установок (духовок, каминов и т.д.), так и для изготовления кухонной утвари (кофеварки, жаровни для тушения, сковородки и др.) [4, 5].

По своему составу термостойкая керамика в основном относится к оксидной (на основе чистых оксидов), безоксидной (на основе карбидов, нитридов, боридов и силицидов) или силикатной и алюмосиликатной керамике на основе соединений, содержащих такие металлы, как алюминий, литий, цирконий, бериллий, титан, магний, иттрий и др. [1, 2, 6]. В качестве сырья для получения термостойкой керамики в основном используют оксидные и бескислородные соединения указанных металлов, а также различное кремнеземистое сырье. Природное глинистое сырье в качестве основного компонента для получения термостойкой керамики используется редко за исключением огнеупорных глин, которые могут содержаться в составе шихт в количестве до 70 мас. % [1–3]. Применение всех перечисленных соединений в составе термостойкой керамики объясняется главным образом высокими значениями температур плавления и прочности наряду с низкими значениями термического коэффициента линейного расширения (ТКЛР) [2, 4].

Для получения изделий из термостойкой керамики применяют полусухое и пластическое формование, шликерное литье и литье на термопластичных связках с последующим обжигом при температурах от 1100 до 1700 °С в зависимости от температуры спекания компонентов шихты [2, 5, 7].

Цель исследования: разработка состава шихты для получения керамики с высокими значениями прочности и термостойкости при пониженной температуре обжига. Дополнительной задачей являлось использование в качестве основного компонента шихты малопластичной глины, применение которой, с одной стороны, снижает себестоимость производства керамики, а с другой, расширяет возможности использования маловостребованного природного сырья. Низкая востребованность малопластичной глины связана с тем, что получаемые с ее использованием изделия отличаются низкими значениями прочности и трещиностойкости, поэтому для ее эффективного применения необходимо использование функциональных добавок, позволяющих повысить качество получаемой керамики.

Авторами данной работы ранее проводились разработки составов шихт на основе малопластичной глины, позволяющие получить стеновые [8, 9] и облицовочные [10], в том числе кислотоупорные [11], изделия. Повышения прочности и трещиностойкости в упомянутых работах удалось достичь за счет введения стеклообразующих добавок и плавней, которые при совместном введении [10, 11] позволили получить эффекты остекловывания частиц керамики в объеме и самоглазурования поверхности изделий. В данной работе предлагается возможность получения стекловидной фазы при пониженной температуре обжига с использованием оксида церия и борной кислоты для повышения прочности и термостойкости.

Материалы и методы исследования

Основным компонентом разрабатываемой шихты являлась глина Суворотского месторождения Владимирской области следующего состава (в мас. %): SiO2 = 67,5; Al2O3 = 10,75; Fe2O3 = 5,85; CaO = 2,8; MgO = 1,7; K2O = 2,4; Na2O = 0,7. Число пластичности данной глины равняется 5,2 [9, 10], а следовательно, она относится к малопластичным по ГОСТ 9169-75. Низкая пластичность глины объясняется наличием оксидов алюминия, кальция и магния [8], которые при этом являются тугоплавкими оксидами и повышают огнеупорность глины. Кроме того, оксиды кремния и алюминия, содержащиеся в данной глине в сравнительно больших количествах, снижают ТКЛР [12], при низких значениях которого термостойкость керамики повышается [4, 5], а щелочные оксиды натрия и калия, повышающие ТКЛР [12], содержатся в минимальных количествах. Таким образом, состав глины обосновывает ее использование для получения термостойкой керамики.

Для образования стекловидной фазы и достижения эффектов самоглазурования и остекловывания в состав шихты вводились оксид церия (СТО 00203789-060-2013) с массовой долей основного вещества 99,8 % и борная кислота марки В 2-го сорта (ГОСТ 18704-78) с массовой долей основного вещества 98,6 %. Оксид церия был выбран в связи с его тугоплавкостью и способностью выступать в роли катализатора сажи при нагревании, что позволит использовать получаемую керамику в качестве самоочищающейся футеровки [6]. Борная кислота выбрана в связи с тем, что она является сильным плавнем, способным значительно снизить температуры образования стекловидной фазы и жидкофазного спекания [9-11].

При проведении исследований образцы разрабатываемой керамики получали по технологии полусухого прессования [8, 9]. Перед началом экспериментов глина высушивалась до постоянной массы и измельчалась для отбора фракции с размером частиц менее 0,63 мм. Затем глина, оксид церия и борная кислота перемешивались вначале в сухом состоянии, а затем с добавлением воды для получения формовочной массы с влажностью 8 мас. %. Из формовочной массы получали образцы при удельном давлении прессования, равном 15 МПа. Отформованные образцы обжигали при максимальной температуре 1050 °С. Образцы на основе исследуемых составов изготавливались сериями по три образца в каждой.

Для получения зависимостей свойств от состава шихты и оценки результатов исследования у полученных образцов по стандартным для керамических материалов методикам определяли прочности на сжатие (σсж, МПа) и изгиб (σизг, МПа), термостойкость (ТС (1000 °С – вода), теплосмен), кислотостойкость (КС, %), плотность (ρ, кг/м3) и открытую пористость (Потк, %).

Результаты исследования и их обсуждение

На первом этапе экспериментальных исследований было изучено влияние содержания оксида церия и борной кислоты на основные свойства разрабатываемой керамики – прочность на сжатие и термостойкость. Как следует из полученных данных (рис. 1, 2), используемые добавки способствуют повышению рассматриваемых свойств, а при их совместном введении наблюдаются эффекты самоглазурования и остекловывания.

torl1.tif

Рис. 1. Зависимость прочности на сжатие разрабатываемой керамики от содержания оксида церия и борной кислоты (БК)

Читайте так же:
Вольфрам что за металл

torl2.tif

Рис. 2. Зависимость термостойкости разрабатываемой керамики от содержания оксида церия и борной кислоты (БК)

Как было установлено в ранее проведенных работах [9–11], образование стекловидной фазы при обжиге, особенно при наличии эффектов самоглазурования и остекловывания, приводит к повышению прочности получаемой керамики за счет того, что стекловидная фаза образует слои между частицами керамики, соединяя их в прочный и твердый каркас. Этим объясняется практически линейное повышение прочности разрабатываемой керамики при введении до 10 мас. % оксида церия и до 5 мас. % борной кислоты. Дальнейшее повышение содержания данных добавок приводит к избытку стекловидной фазы и повышению толщины ее слоев. В результате стекловидная фаза начинает выступать не в роли связующего, а в качестве отдельной фазы, которая отличается хрупкостью и по правилу аддитивности начинает снижать прочность материала в целом. Этим объясняется снижение расстояния между прямыми на рис. 1, их выравнивание при введении более 10 мас. % оксида церия и постепенное снижение прямой для 10 мас. % борной кислоты ниже значений прямой для 5 мас. % борной кислоты. Кроме того, при избытке стекловидной фазы наблюдается потеря формы изделиями и оплавление их граней, а также стоит учитывать, что повышение количества вводимых добавок, особенно оксида церия, приводит к повышению себестоимости получения разрабатываемого керамического материала.

Повышение термостойкости при введении рассматриваемых добавок можно объяснить несколькими причинами. В первую очередь нужно учесть, что борная кислота при обжиге образует расплав, который вступает во взаимодействие с оксидом кремния, входящим в состав глины, с образованием боросиликатов [11], которые отличаются высокой термостойкостью, особенно при высоком содержании оксида кремния и малых количествах щелочных оксидов [12], чему способствует состав применяемой малопластичной глины. Тугоплавкие оксиды алюминия, кальция и магния, также содержащиеся в используемой малопластичной глине, частично переходят в состав стекловидной фазы при обжиге, дополнительно повышая ее термостойкость. Также стоит учесть, что борсодержащие фазы, способствуют формированию материала с низкими значениями ТКЛР и, как следствие, способствует повышению его термостойкости [4]. Кроме того, известно, что введение оксида церия повышает термический коэффициент расширения стекол, однако в то же время он способствует уменьшению разницы между значениями данного коэффициента между аморфными и кристаллическими областями в материале [13], что повышает термостойкость разрабатываемой керамики.

В связи с характером полученных зависимостей было принято решение вводить в состав шихты до 10 мас. % оксида церия и 5 мас. % борной кислоты, что позволяет избежать образования избытка стекловидной фазы при обжиге и в свою очередь дает максимальные значения прочности на сжатие и термостойкости, а также сохраняет правильную форму получаемых изделий.

На втором этапе экспериментальных исследований был определен комплекс основных свойств разрабатываемой керамики в зависимости от содержания оксида церия в составе шихты, содержащей 5 мас. % борной кислоты. В результате (таблица) было установлено, что с повышением количества оксида церия происходит увеличение значений всех рассматриваемых свойств, кроме открытой пористости, значения которой уменьшаются.

Стекло, ситаллы и каменное литье. Строительные пластмассы

Силикатное стекло, получают из смеси кварцевого песка, мела, соды и др. компонентов.

Прозрачность и возможность окраски стекла в любые цвета, высокая химическая стойкость, электроизоляционные и многие другие ценные свойства делают стекло незаменимым строительным материалом.

5.1 Сырье и технология изготовления стекла

Сырьевая шихта стекла состоит из следующих веществ: кремнезем (SiO2), вводят в виде кварцевого песка, молотых кварцитов или песчаников, повышающий тугоплавкость и химическую стойкость стекла. Глинозем (Al2O3), поступает в сырьевую шихту в виде полевых шпатов и каолина. Его влияние на свойства стекла аналогично действию SiO2.Оксид натрия (Na2О), вводят в стекло в виде соды и сульфата натрия Na2SO4 понижает температуру плавления стекла, повышает коэффициент термического расширения и уменьшает химическую стойкость. Оксид кальция (СаО) и магния (МgО) вводят в шихту в виде мела, мрамора, известняка, доломита и магнезита. Эти оксиды повышают химическую стойкость стекла.

В специальные стекла вводят оксиды бора, свинца, бария и др.

Вспомогательные сырьевые материалы: осветлители – вещества, способствующие удалению из стекломассы газовых пузырей; обесцвечиватели – вещества, обесцвечивающие стекольную массу; глушители – вещества, делающие стекло непрозрачным. Красители для стекла могут быть молекулярными, полностью растворяющимися в стекломассе, и коллоидными, равномерно распределяющимися в стекломассе в виде мельчайших (коллоидных) частиц. К первым относятся соединения кобальта (синий цвет), хрома (зеленый), марганца (фиолетовый), железа (коричневый и сине-зеленые тона), а ко вторым – золото (рубиновый), серебро (желтый), селен (розовый).

Перед варкой стекла сырьевые материалы измельчают, тщательно смешивают в требуемых соотношениях, брикетируют и подают в стекловаренную печь.

Стекловарение. Обычное стекло получают в непрерывно действующих ванных печах с полезным объемом до 600 м 3 и суточной производительностью более 300 т. На первой стадии стекловарение – силикатообразовании – щелочные компоненты образуют с частью кремнезема силикаты, плавящиеся уже при 1000. 1200° С. В этом расплаве растворяются наиболее тугоплавкие компоненты SiO2 и А12О3. Образующаяся масса неоднородная по составу и насыщена газовыми пузырьками. Удаление пузырьков из расплава осуществляется на второй наиболее длительной стадии стекловарения – стеклообразовании – при температуре 1400. 1600° С. Третья заключительная стадия – студка – охлаждение стекломассы до температуры, при которой она приобретает оптимальную для данного метода формования стеклоизделий вязкость. Метод формования зависит от вида изделия. Для получения строительного стекла используют вытяжку, прокат, прессование.

При охлаждении стекла в нем возникают внутренние напряжения. Наиболее опасным моментом является переход стекла от вязкопластического состояния к хрупкому, поэтому для снятия внутренних напряжений после формования производят отжиг – охлаждение по специальному режиму: быстрое до начала затвердевания стекломассы, очень медленное в опасном интервале температур (600..300°С) и вновь быстрое до нормальной температуры.

Листовое стекло толщиной до 6 мм производят методом вертикального вытягивания на машинах ВВС. Лента стекла формуется из стекломассы лодочкой (шамотным брусом с прорезью), удерживаемой на надлежащем уровне штангами. Стекломасса выдавливается в щель лодочки и оттягивается вверх валками машины в виде ленты шириной до 4.5 м. Скорость вытягивания достигает 2 м/мин. Проходя между холодильниками 3 от лодочки до первой пары валков, стекломасса охлаждается настолько, что становится твердой и валки не оставляют на ней отпечатков (I зона). Далее стекло валками 5 подается в шахту высотой 5 – 7м. В нижней части шахты производится отжиг стекла (II зона). В верхней части стекло охлаждается окончательно и, выходя на отломочную площадку 7, нарезают на требуемые размеры.

Читайте так же:
Как обозначать сварные швы на чертеже

Рис.5.1. Машина вертикального вытягивания стекла: 1 – стекломасса; 2–лодочка; 3 – холодильники; 4 – шихта машины; 5 – тянущие валки; 6 – скаты для удаления боя; 7 – отломочная площадка.

Способ получения высококачественного стекла – флоат-метод (от англ. float – плавать), отличается тем, что стекломасса выливается на поверхность расплавленного металла (обычно олова) и формуется на нем. Производительность таких установок до 3. 4 тыс. кв. м /ч. Размер листов: ширина до 3 м; толщина от 2 до 25 мм. Преимущества флоат-метода – стабильная толщина листа и высокое качество поверхности, не требующее дальнейшей полировки. В Европе большая часть стекла вырабатывается именно этим методом.

Какой самый тугоплавкий металл: название и свойства

Металлы относятся к самым распространенным материалам наравне со стеклом и пластмассами. Они используются людьми с давних времен. На практике люди познавали свойства металлов и с выгодой использовали их для изготовления посуды, бытовых предметов, различных сооружений и произведений искусства. Основной характеристикой этих материалов является их тугоплавкость и твердость. Собственно, от этих качеств зависит их применение в той или иной области.

Физические свойства металлов

Все металлы обладают следующими общими свойствами:

  1. Цвет – серебристо-серый с характерным блеском. Исключение составляют: медь и золото. Они соответственно выделяются красноватым и желтым оттенком.
  2. Агрегатное состояние – твердое тело, кроме ртути, которая является жидкостью.
  3. Тепло- и электропроводность – для каждого вида металлов выражается по-разному.
  4. Пластичность и ковкость – изменяющийся параметр в зависимости от конкретного металла.
  5. Температура плавления и кипения – устанавливает тугоплавкость и легкоплавкость, обладает разными значениями для всех материалов.

самый тугоплавкий металл

Все физические свойства металлов зависят от строения кристаллической решетки, ее формы, прочности и пространственного расположения.

Тугоплавкость металлов

Этот параметр становится важным, когда возникает вопрос о практическом применении металлов. Для таких важных отраслей народного хозяйства, как авиастроение, кораблестроение, машиностроение, основой являются тугоплавкие металлы и их сплавы. Кроме этого, их используют для изготовления высокопрочного рабочего инструмента. Литьем и выплавкой получают многие важные детали и изделия. По прочности все металлы делятся на хрупкие и твердые, а по тугоплавкости их подразделяют на две группы.

Тугоплавкие и легкоплавкие металлы

  1. Тугоплавкие – их температура плавления превышает точку плавления железа (1539 °C). К ним можно отнести платину, цирконий, вольфрам, тантал. Таких металлов всего несколько видов. На практике их применяется еще меньше. Некоторые не используются, так как они имеют высокую радиоактивность, другие – слишком хрупкие и не обладают нужной мягкостью, третьи – подвержены коррозии, а есть такие, что экономически невыгодные. Какой металл самый тугоплавкий? Как раз об этом пойдет речь в данной статье.
  2. Легкоплавкие – это металлы, которые при температуре меньше или равной температуре плавления олова 231,9 °C могут изменить свое агрегатное состояние. Например, натрий, марганец, олово, свинец. Металлы применяются в радио- и электротехнике. Их часто используют для антикоррозийных покрытий и в качестве проводников.

Вольфрам – самый тугоплавкий металл

Это твердый и тяжелый материал с металлическим блеском, светло-серого цвета, обладающий высокой тугоплавкостью. Механической обработке поддается трудно. При комнатной температуре он является хрупким металлом и легко ломается. Вызвано это загрязнением его примесями кислорода и углерода. Технически чистый вольфрам при температуре более 400 градусов Цельсия становится пластичным. Проявляет химическую инертность, плохо вступает в реакции с другими элементами. В природе вольфрам встречается в виде сложных минералов, таких как:

  • шеелит;
  • вольфрамит;
  • ферберит;
  • гюбнерит.

назовите самый тугоплавкий металл

Вольфрам получают из руды, применяя сложные химические переработки, в виде порошка. Используя методы прессования и спекания, изготовляют детали простой формы и бруски. Вольфрам — очень стойкий элемент к температурным воздействиям. Поэтому размягчить металл не могли в течение ста лет. Не имелось таких печей, которые могли бы разогреваться до нескольких тысяч градусов. Ученые доказали, что самым тугоплавким металлом является вольфрам. Хотя существует мнение, что сиборгий, по теоретическим данным, обладает большей тугоплавкостью, но утверждать твердо этого нельзя, так как он радиоактивный элемент и имеет маленький срок существования.

Исторические сведения

Знаменитый шведский химик Карл Шееле, имеющий профессию аптекаря, в небольшой лаборатории, проводя многочисленные опыты, открыл марганец, барий, хлор и кислород. А незадолго до смерти в 1781 году выявил, что минерал тунгстен является солью неизвестной тогда кислоты. После двух лет работы его ученики, два брата д’Элуяр (испанские химики), выделили из минерала новый химический элемент и назвали его вольфрамом. Только через столетие вольфрам – самый тугоплавкий металл — произвел настоящий переворот в промышленности.

Режущие свойства вольфрама

В 1864 году английский ученый Роберт Мюшет использовал вольфрам как легирующую добавку к стали, которая выдерживала красное каление и еще больше увеличивала твердость. Резцы, которые изготовляли из полученной стали, увеличили скорость резания металла в 1,5 раза, и она стала составлять 7,5 метра в минуту.

самый тугоплавкий металл в мире

Работая в этом направлении, ученые получали все новые технологии, увеличивая скорость обработки металла с использованием вольфрама. В 1907 году появилось новое соединение вольфрама с кобальтом и хромом, которое стало основоположником твердых сплавов, способных увеличивать скорость резания. В настоящее время она возросла до 2000 метров в минуту, и все это благодаря вольфраму – самому тугоплавкому металлу.

Применение вольфрама

Этот металл обладает сравнительно высокой ценой и тяжело обрабатывается механическим способом, поэтому применяют его там, где невозможно заменить другими, сходными по свойствам материалами. Вольфрам прекрасно выдерживает высокие температуры, имеет значительную прочность, наделен твердостью, упругостью и тугоплавкостью, поэтому находит широкое использование во многих областях промышленности:

  • Металлургической. Она является основным потребителем вольфрама, который идет на производство высокого качества легированных сталей.
  • Электротехнической. Температура плавления самого тугоплавкого металла составляет почти 3400 °C. Тугоплавкость металла позволяет применять его для производства нитей накаливания, крючков в осветительных и электронных лампах, электродов, рентгеновских трубок, электрических контактов.
Читайте так же:
Как точить кухонные ножи точилкой

вольфрам самый тугоплавкий металл

  • Машиностроительной. Благодаря повышенной прочности сталей, содержащих вольфрам, изготавливают цельнокованые роторы, зубчатые колеса, коленчатые валы, шатуны.
  • Авиационной. Какой самый тугоплавкий металл используют для получения твердых и жаропрочных сплавов, из которых делают детали авиационных двигателей, электровакуумных приборов, нити накаливания? Ответ прост – это вольфрам.
  • Космической. Из стали, содержащей вольфрам, производят реактивные сопла, отдельные элементы для реактивных двигателей.
  • Военной. Высокая плотность металла позволяет изготавливать бронебойные снаряды, пули, броневую защиту торпед, снарядов и танков, гранаты.
  • Химической. Стойкая вольфрамовая проволока против кислот и щелочей используется для сеток к фильтрам. С помощью вольфрама меняют скорость химических реакций.
  • Текстильной. Вольфрамовая кислота используется как краситель для тканей, а вольфрамит натрия применяют для производства кожи, шелка, водоустойчивых и огнестойких тканей.

Приведенный перечень использования вольфрама в разных областях индустрии указывает на высокую ценность этого металла.

Получение сплавов с вольфрамом

Вольфрам, самый тугоплавкий металл в мире, часто используют для получения сплавов с другими элементами для улучшения свойств материалов. Сплавы, которые содержат вольфрам, как правило, получают по технологии порошковой металлургии, так как при общепринятом способе все металлы превращаются в летучие жидкости или газы при его температуре плавления. Процесс сплавления проходит в вакууме или в атмосфере аргона, чтобы избежать окисления. Смесь, состоящую из металлических порошков, прессуют, спекают и подвергают плавке. В некоторых случаях только вольфрамовый порошок подвергают прессовке и спеканию, а затем пористую заготовку насыщают расплавом другого металла. Сплавы вольфрама с серебром и медью получают именно таким способом. Даже небольшие добавки самого тугоплавкого металла увеличивают жаростойкость, твердость и стойкость к окислению в сплавах с молибденом, танталом, хромом и ниобием. Пропорции в этом случае могут быть совершенно любыми в зависимости от потребностей промышленности. Более сложные сплавы, зависящие от соотношения компонентов с железом, кобальтом и никелем, имеют следующие свойства:

  • не тускнеют на воздухе;
  • обладают хорошей химической стойкостью;
  • имеют отличные механические свойства: твердость и износоустойчивость.

Довольно сложные соединения образует вольфрам с бериллием, титаном и алюминием. Они выделяются устойчивостью при высокой температуре к окислению, а также жаропрочностью.

Свойства сплавов

В практической деятельности вольфрам часто соединяют с группой иных металлов. Соединения вольфрама с хромом, кобальтом и никелем, обладающие повышенной стойкостью к кислотам, используют для изготовления хирургических инструментов. А особые жаропрочные сплавы, кроме вольфрама – самого тугоплавкого металла, содержат в своем составе хром, никель, алюминий, никель. Вольфрам, кобальт и железо входит в состав лучших марок магнитной стали.

температура плавления самого тугоплавкого металла

Вольфрамсодержащие стали устойчивы к истиранию, не трескаются, неизменно сохраняют твердость. Режущие инструменты не только увеличивают скорость обработки металла, но и имеют длительный срок службы.

Самые легкоплавкие и тугоплавкие металлы

К легкоплавким относятся все металлы, температура плавления которых меньше, чем у олова (231,9 °C). Элементы этой группы находят применение в качестве антикоррозийных покрытий, в электро- и радиотехнике, входят в состав антифрикционных сплавов. Ртуть, точка плавления которой -38,89 °C, при комнатной температуре является жидкостью и находит широкое применение в научных приборах, ртутных лампах, выпрямителях, переключателях, в хлорном производстве. У ртути самая низкая температура плавления по сравнению с другими металлами, входящими в группу легкоплавких. К тугоплавким металлам принадлежат все, температура плавления которых больше, чем у железа (1539 °C). Чаще всего их используют в качестве добавок при изготовлении легированных сталей, а также они могут служить и основой для некоторых специальных сплавов. Вольфрам, имеющий максимальную температуру плавления 3420 °C, в чистом виде используют в основном для нитей накала в электролампах.

какой металл самый тугоплавкий

Довольно часто в кроссвордах задают вопросы, какой из металлов самый легкоплавкий или самый тугоплавкий? Теперь, не задумываясь, можно ответить: самый легкоплавкий – ртуть, а самый тугоплавкий – вольфрам.

Коротко о железе

Этот металл называют основным конструкционным материалом. Детали из железа встречаются как на космическом корабле или подводной лодке, так и дома на кухне в виде столовых приборов и различных украшений. Этот металл имеет серебристо-серый цвет, обладает мягкостью, пластичностью и магнитными свойствами. Железо является очень активным элементом, на воздухе образуется оксидная пленка, которая препятствует продолжению реакции. Во влажной среде появляется ржавчина.

Температура плавления железа

Железо обладает пластичностью, хорошо поддается ковке и плохо обрабатывается литьем. Этот прочный металл легко обрабатывается механическим способом, используется для изготовления магнитоприводов. Хорошая ковкость позволяет его применять для декоративных украшений. Является ли железо самым тугоплавким металлом? Следует отметить, что его температура плавления равна 1539 °C. А по определению, к тугоплавким относятся металлы, температура плавления которых больше, чем у железа.

самым тугоплавким металлом является

Однозначно можно сказать, что железо — не самый тугоплавкий металл, и даже не принадлежит к этой группе элементов. Он относится к среднеплавким материалам. Назовите самый тугоплавкий металл? Такой вопрос не застанет теперь вас врасплох. Можно смело отвечать – это вольфрам.

Вместо заключения

Примерно тридцать тысяч тонн в год вольфрама производится во всем мире. Этот металл непременно входит в состав наилучших сортов сталей для изготовления инструментов. На нужды металлургии расходуется до 95% всего вырабатываемого вольфрама. Для удешевления процесса в основном используют более дешевый сплав, состоящий из 80% процентов вольфрама и 20% железа. Используя свойства вольфрама, его сплав с медью и никелем применяют для производства контейнеров, используемых под хранение радиоактивных веществ. В радиотерапии этот же сплав служит для изготовления экранов, обеспечивая надежную защиту.

Наиболее тугоплавкий металл. Характеристика металлов

Металлы — это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

Читайте так же:
Алмазные боры для гравера

наиболее тугоплавкий металл

Физические свойства металлов

Характеристика металлов по физическим свойствам может быть выражена в виде четырех основных пунктов.

  1. Металлический блеск — все имеют примерно одинаковый серебристо-белый красивый характерный блеск, кроме меди и золота. Они имеют красноватый и желтый отлив соответственно. Кальций — серебристо-голубой.
  2. Агрегатное состояние — все твердые при обычных условиях, кроме ртути, которая находится в виде жидкости.
  3. Электро- и теплопроводность — характерна для всех металлов, однако выражена в разной степени.
  4. Ковкость и пластичность — также общий для всех металлов параметр, который способен варьироваться в зависимости от конкретного представителя.
  5. Температура плавления и кипения — определяет, какой металл тугоплавкий, а какой легкоплавкий. Этот параметр разный для всех элементов.

Все физические свойства объясняются особым строением металлической кристаллической решетки. Ее пространственным расположением, формой и прочностью.

самый тугоплавкий металл в мире

Легкоплавкие и тугоплавкие металлы

Данный параметр является очень важным, когда речь заходит об областях применения рассматриваемых веществ. Тугоплавкие металлы и сплавы — это основа машино- и кораблестроения, выплавки и литья многих важный изделий, получения качественного рабочего инструмента. Поэтому знание температур плавления и кипения играет основополагающую роль.

Характеризуя металлы по прочности, можно разделить их на твердые и хрупкие. Если же говорить о тугоплавкости, то здесь выделяют две основные группы:

  1. Легкоплавкие — это такие, которые способны менять агрегатное состояние при температурах ниже 1000 о С. Примерами могут служить: олово, свинец, ртуть, натрий, цезий, марганец, цинк, алюминий и другие.
  2. Тугоплавкими считаются те, чья температура плавления выше обозначенной величины. Их не так много, а на практике применяется еще меньше.

Таблица металлов, имеющих температуру плавления свыше 1000 о С, представлена ниже. Именно в ней и располагаются самые тугоплавкие представители.

Название металлаТемпература плавления, о СТемпература кипения, о С
Золото, Au1064.182856
Бериллий, Ве12872471
Кобальт, Со14952927
Хром, Cr19072671
Медь, Cu1084,622562
Железо, Fe15382861
Гафний, Hf22334603
Иридий, Ir24464428
Марганец, Mn12462061
Молибден, Мо26234639
Ниобий, Nb24774744
Никель, Ni14552913
Палладий, Pd1554,92963
Платина, Pt1768.43825
Рений, Re31865596
Родий, Rh19643695
Рутений, Ru23344150
Тантал, Та30175458
Технеций, Тс21574265
Торий, Th17504788
Титан, Ti16683287
Ванадий, V19103407
Вольфрам, W34225555
Цирконий, Zr18554409

Данная таблица металлов включает в себя всех представителей, чья температура плавления выше 1000 о С. Однако на практике многие из них не применяются по различным причинам. Например, из-за экономической выгоды или вследствие радиоактивности, слишком высокой степени хрупкости, подверженности коррозионному воздействию.

Также из данных таблицы очевидно, что самый тугоплавкий металл в мире — это вольфрам. Наименьший показатель у золота. При работе с металлами важное значение имеет мягкость. Поэтому многие из обозначенных выше также не используются в технических целях.

Наиболее тугоплавкий металл — вольфрам

В периодической системе располагается под порядковым номером 74. Название получил по фамилии известного физика Стивена Вольфрама. При обычных условиях представляет собой твердый тугоплавкий металл серебристо-белого цвета. Обладает ярко выраженным металлическим блеском. Химически практически инертен, в реакции вступает неохотно.

В природе содержится в виде минералов:

  • вольфрамит;
  • шеелит;
  • гюбнерит;
  • ферберит.

Учеными было доказано, что вольфрам — наиболее тугоплавкий металл из всех существующих. Однако существуют предположения о том, что сиборгий теоретически способен побить рекорд этого металла. Но он является радиоактивным элементом с очень коротким периодом существования. Поэтому доказать это пока невозможно.

При определенной температуре (свыше 1500 о С) вольфрам становится ковким и пластичным. Поэтому возможно изготовление тонкой проволоки на его основе. Это свойство используется для изготовления нитей накаливания в обычных бытовых электрических лампочках.

характеристика металлов

Как наиболее тугоплавкий металл, выдерживающий температуры больше 3400 о С, вольфрам применяется в следующих областях техники:

  • как электрод при аргонной сварке;
  • для получения кислотоустойчивых, износостойких и жаростойких сплавов;
  • в качестве нагревательного элемента;
  • в вакуумных трубках как нить накаливания и прочее.

Помимо металлического вольфрама, широко применяются в технике, науке и электронике его соединения. Как самый тугоплавкий металл в мире он и соединения формирует с очень высококачественными характеристиками: прочные, устойчивые практически ко всем видам химического воздействия, не подвергающиеся коррозии, выдерживающие низкие и высокие температуры (победит, сульфид вольфрама, его монокристаллы и другие вещества).

Ниобий и его сплавы

Nb, или ниобий, — при обычных условиях серебристо-белый блестящий металл. Он также является тугоплавким, поскольку температура перехода в жидкое состояние для него составляет 2477 о С. Именно это качество, а также сочетание низкой химической активности и сверхпроводимости позволяет ниобию становиться все более популярным в практической деятельности человека с каждым годом. Сегодня этот металл используется в таких отраслях, как:

  • ракетостроение;
  • авиационная и космическая промышленность;
  • атомная энергетика;
  • химическое аппаратостроение;
  • радиотехника.

Этот металл сохраняет свои физические свойства даже при очень низких температурах. Изделия на его основе отличаются коррозионной устойчивостью, жаростойкостью, прочностью, отличной проводимостью.

таблица металлов

Этот металл добавляют к алюминиевым материалам для повышения химической стойкости. Из него изготовляют катоды и аноды, им легируют цветные сплавы. Даже монеты в некоторых странах делают с содержанием ниобия.

Тантал

Металл, в свободном виде и при обычных условиях покрытый оксидной пленкой. Обладает набором физических свойств, которые позволяют ему быть широко распространенным и очень важным для человека. Его основные характеристики следующие:

  1. При температуре свыше 1000 о С становится сверхпроводником.
  2. Это наиболее тугоплавкий металл после вольфрама и рения. Температура плавления составляет 3017 о С.
  3. Прекрасно поглощает газы.
  4. С ним легко работать, так как он прокатывается в пласты, фольгу и проволоку без особого труда.
  5. Обладает хорошей твердостью и не хрупкий, сохраняет пластичность.
  6. Очень устойчив к воздействию химических агентов (не растворяется даже в царской водке).

Благодаря таким характеристикам сумел завоевать популярность как основа для многих жаропрочных и кислотоустойчивых, антикоррозионных сплавов. Его многочисленные соединения находят применение в ядерной физике, электронике, приборах вычислительного плана. Используются как сверхпроводники. Раньше тантал использовался как элемент в лампах накаливания. Сейчас его место занял вольфрам.

Читайте так же:
Как сделать из резинок браслет на станке

легкоплавкие и тугоплавкие металлы

Хром и его сплавы

Один из самых твердых металлов, в естественном виде голубовато-белой окраски. Его температура плавления ниже, чем у рассмотренных до сих пор элементов, и составляет 1907 о С. Однако он все равно используется в технике и промышленности повсеместно, так как хорошо поддается механическим воздействиям, обрабатывается и формуется.

Особенно ценен хром в качестве напылителя. Его наносят на изделия для придания им красивого блеска, защиты от коррозии и повышения износостойкости. Процесс называется хромированием.

Сплавы хрома очень популярны. Ведь даже небольшое количество этого металла в сплаве значительно увеличивает твердость и устойчивость последнего к воздействиям.

Цирконий

Один из самых дорогих металлов, поэтому применение его в технических целях затруднено. Однако физические характеристики делают его просто незаменимым во многих других отраслях.

При обычных условиях это красивый серебристо-белый металл. Обладает достаточно высокой температурой плавления — 1855 о С. Имеет хорошую твердость, устойчивость к коррозии, так как химически не активен. Также отличается великолепной биологической совместимостью с кожей человека и всего организма в целом. Это делает его ценным металлом для использования в медицине (инструменты, протезы и так далее).

Основные области применения циркония и его соединений, в том числе сплавов, следующие:

  • ядерная энергетика;
  • пиротехника;
  • легирование металлов;
  • медицина;
  • изготовление биопосуды; ;
  • как сверхпроводник.

Из циркония и сплавов на его основе изготавливаются даже украшения, способные влиять на улучшение состояния здоровья человека.

твердый тугоплавкий металл

Молибден

Если выяснять, какой металл самый тугоплавкий, то, помимо обозначенного вольфрама, можно назвать и молибден. Его температура плавления составляет 2623 о С. При этом он достаточно твердый, пластичный и поддающийся обработке.

Используется он в основном не в чистом виде, а как составной компонент сплавов. Они, благодаря присутствию молибдена, значительно укрепляются в износостойкости, жаропрочности и антикоррозийности.

Некоторые соединения молибдена используют как технические смазки. Также этот металл является легирующим материалом, одновременно влияющим и на прочность, и на антикоррозийность, что встречается очень редко.

Ванадий

Серый металл с серебристым блеском. Обладает достаточно высоким показателем плавкости (1920 о С). Используется в основном как катализатор во многих процессах, благодаря своей инертности. Применяется в энергетике как химический источник тока, в производствах неорганических кислот. Основное значение имеет не чистый металл, а именно некоторые его соединения.

какой металл тугоплавкий

Рений и сплавы на его основе

Какой металл самый тугоплавкий после вольфрама? Это рений. Его показатель плавкости составляет 3186 о С. По прочности превосходит и вольфрам, и молибден. Пластичность его не слишком высока. Спрос на рений очень велик, а вот добыча составляет сложности. Вследствие этого он является самым дорогим металлом из существующих на сегодняшний день.

Применяется для изготовления:

  • реактивных двигателей;
  • термопар;
  • нитей накаливания для спектрометров и прочих устройств;
  • как катализатор при нефтепереработке.

Все области применения дорогостоящие, поэтому он используется только в случае крайней необходимости, когда заменить чем-либо другим возможности нет.

Титановые сплавы

Титан — это очень легкий металл серебристо-белого цвета, который находит широкое применение в металлургической промышленности и металлообработке. Может взорваться при нахождении в мелкодисперсном состоянии, поэтому является пожароопасным.

Применяется в авиа- и ракетостроении, при производстве кораблей. Широко используется в медицине благодаря биологической совместимости с организмом (протезы, пирсинги, имплантаты и прочее).

реферат Получение хромокалевых квасцов

Шестой химический элемент периодической таблицы Менделеева – хром. Открытие сибирского красного свинца в 1761 году. Высокая тугоплавкость металла и его устойчивость по отношению к кислотам. Получение металлического хрома. Распространение хрома в природе.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

РубрикаХимия
Видреферат
Языкрусский
Дата добавления09.01.2010
Размер файла26,7 K

Подобные документы

Характеристика химических свойств хрома в чистом виде и в различных соединениях. Изучение истории открытия этого элемента, особенностей его применения в химической промышленности. Виды хромитов, легирование хромом стали, методы получение чистого хрома.

реферат [25,1 K], добавлен 23.01.2010

Распространение хрома в природе. Особенности получения хрома и его соединений. Физические и химические свойства хрома, его практическое применение в быту и промышленности. Неорганические пигменты на основе хрома, технология и способы их получения.

курсовая работа [398,7 K], добавлен 04.06.2015

Изучение физических и химических свойств хрома, вольфрама, молибдена. Оксид хрома, как самое устойчивое соединение хрома. Гидроксиды, соли кислородосодержащих кислот элементов шестой Б группы. Пероксиды, карбиды, нитриды, бориды элементов шестой Б группы.

лекция [4,5 M], добавлен 29.06.2011

Получение чистого металлического хрома электролизом водных растворов хлорида хрома. Основные физические и химические свойства хрома. Характеристика бихромата аммония, дихромида калия, их токсичность и особенности применения. Получение хромового ангидрида.

курсовая работа [1,6 M], добавлен 07.01.2015

Электронная формула и степень окисления хрома, его общее содержание в земной коре и космосе. Способы получения хрома, его физические и химические свойства. Взаимодействие хрома с простыми и сложными веществами. Особенности применения, основные соединения.

презентация [231,9 K], добавлен 16.02.2013

Хром — твёрдый блестящий металл. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей. Соединения хрома. Кислород – самый распространенный элемент земной коры. Получение и свойства кислорода. Применение кислорода.

доклад [14,8 K], добавлен 03.11.2006

Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector