Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Законы Кирхгофа для мгновенных значений

Законы Кирхгофа для мгновенных значений

Первый закон Кирхгофа для мгновенных значений: алгебраическая сумма мгновенных значений токов в узле равна нулю.

где k – число ветвей, соединенных в узле.

Второй закон Кирхгофа для мгновенных значений: алгебраическая сумма напряжений на элементах контура в заданный момент времени равна алгебраической сумме ЭДС в том же контуре в тот же момент времени:

где k – порядковый номер напряжения;

p – порядковый номер ЭДС;

n – суммарное число элементов в контуре;

m – число ЭДС в контуре.

1.11 Законы Кирхгофав комплексной форме

Как показано в п. 1.3, синусоидальные функции времени можно представить в комплексной форме. Осуществив подобный переход, можно записать законы Кирхгофа для цепи синусоидального тока в комплексной форме.

Первый закон Кирхгофа в комплексной форме: алгебраическая сумма комплексов токов в узле электрической цепи равна нулю.

где k – число ветвей, соединенных в узле.

Например, для цепи, изображенной на рис.1.9, уравнение, составленное по первому закону Кирхгофа в комплексной форме, имеет вид:

Второй закон Кирхгофа в комплексной форме: алгебраическая сумма комплексов напряжений в контуре равна алгебраической сумме комплексов ЭДС в этом же контуре.

Для контура, изображенного на рис.1.10, уравнение, составленное по второму закону Кирхгофа в комплексной форме, можно записать следующим образом:

где — комплекс падения напряжения на резисторе R1;

— комплекс падения напряжения на катушке индуктивности L;

— комплекс падения напряжения на резисторе R3;

— комплекс падения напряжения на конденсаторе С;

Пример 7

Определить комплексы токов в ветвях, показания приборов сложной цепи рис.1.11, построить векторную диаграмму токов и напряжений и осциллограмму напряжения на резисторе R1.

Решение

Угловая частота колебаний в цепи:

Определим комплексные сопротивления всех элементов цепи, при этом будем считать, что измерительные приборы идеальные, т.е. сопротивление амперметра равно нулю, а сопротивление вольтметра – бесконечности.

Комплексное сопротивление резистора R1:

Комплексное сопротивление резистора R2:

Комплексное сопротивление катушки индуктивности L:

Комплексное сопротивление резистора R3:

Комплексное сопротивление конденсатора С:

Комплекс действующего значения напряжения :

Изобразим схему замещения цепи, на которой все элементы цепи и напряжение заменены их изображениями в комплексной форме (рис.1.12).

Комплексные сопротивления и соединены последовательно, значит их эквивалентное комплексное сопротивление:

Комплексные сопротивления и также соединены последовательно, значит их эквивалентное комплексное сопротивление:

Цепь приобретет вид, показанный на рис.1.13.

Ветви цепи, содержащие комплексные сопротивления и соединены параллельно, следовательно, эквивалентное комплексное сопротивление участка цепи между узлами a и b:

После преобразований цепь приобретет вид, показанный на рис.1.14.

Полное эквивалентное комплексное сопротивление цепи рассчитывается как сумма комплексных сопротивлений и :

Определим комплекс действующего значения тока в неразветвленной части цепи:

Для того, чтобы определить токи в ветвях, содержащих комплексные сопротивления , и , , определим комплекс напряжения между узлами a и b.

Определим комплексы токов в ветвях:

Ток можно было получить, используя первый закон Кирхгофа:

Определим показания приборов. Показания приборов представляют собой действующие значения измеряемых величин.

Амперметр показывает действующее значение тока, комплекс которого: . Действующее значение – это модуль комплекса тока, т.е. 11.74 (А).

Вольтметр показывает действующее значение напряжения между узлами a и b, комплекс которого: . Действующее значение – это модуль комплекса напряжения, т.е. 41.52 (В).

Векторная диаграмма токов представлена на рис.1.15.

Для построения векторной диаграммы напряжений определим комплексы напряжений на всех элементах цепи.

Комплекс напряжения на резисторе :

Комплекс напряжения на резисторе :

Комплекс напряжения на катушке индуктивности :

Комплекс напряжения на резисторе :

Комплекс напряжения на конденсаторе :

Векторная диаграмма напряжений представлена на рис.1.16.

Для построения осциллограммы напряжения на резисторе R1 необходимо от найденного нами ранее изображения этого напряжения в комплексной форме перейти к ее аналитической форме записи.

Найдем амплитуду этого напряжения:

Аналитическая зависимость напряжения на резисторе R1 от времени будет иметь вид (с учетом того, что сек -1 ):

Читайте так же:
Каким сверлом просверлить кафельную плитку

Согласно этой формуле осциллограмма будет иметь вид, представленный на рис.1.17.

Второй закон кирхгофа определяет соотношение

Второй закон Кирхгофа

Давайте посмотрим на нашу последовательную схему с другой стороны. На этот раз мы пронумеруем все точки схемы, чтобы к ним можно было привязать напряжения:

kirhgof22

Если мы подключим вольтметр к точкам 1 и 2 (красный щуп к точке 2, а черный — к точке 1), то он зарегистрирует напряжение +45 В. Обычно дисплей цифрового электроизмерительного прибора знак "+" не показывает, но так как в рамках нашей статьи полярность напряжения имеет очень важное значение, мы будем показывать положительные числа с этим знаком:

kirhgof23

Когда рядом с напряжением указываются два символа (символы "2-1" в обозначении U2-1), это означает, что напряжение в первой точке (2) измеряется по отношению ко второй точке (1). Напряжение обозначенное как "Ucd" скажет нам о том, что красный щуп измерительного прибора подсоединяется к точке "с", а черный — к точке "d", то есть это напряжение измеряется в точке "c" относительно точки "d":

kirhgof24

Если мы теперь возьмем тот же самый вольтметр и измерим напряжения на каждом резисторе цепи, обходя ее по часовой стрелке (подсоединяя при этом красный щуп к первой точке, а черный — ко второй), то получим следующие показания:

kirhgof25

kirhgof26

Ранее вы познакомились с одним из принципов последовательной цепи, который гласит что общее напряжение такой цепи складывается из напряжений ее отдельных участков. Но, если при измерении напряжения мы будем учитывать его полярность (математический знак), то пред нами откроется новый аспект этого принципа — суммарное напряжение цепи будет равно нулю:

kirhgof27

Этот принцип известен как Второй Закон Кирхгофа или Закон напряжений Кирхгофа (открыт в 1847 году немецким физиком Густавом Кирхгофом), и гласит он следующее:

"Алгебраическая сумма всех напряжений любой замкнутой цепи должна равняться нулю"

Здесь под словом "алгебраическая" понимается учет математического знака (полярности) напряжения, а под словом "замкнутой цепи" — понимается последовательный путь, проложенный вокруг этой цепи из одной ее точки к другим точкам, и обратно к первой точке. В приведенном выше примере замкнутая цепь сформирована последовательностью точек 1-2-3-4-1. Не имеет абсолютно никакого значения с какой точки мы начнем и в каком направлении мы будем двигаться; сумма напряжений все равно будет равняться нулю. В качестве еще одного примера можно подсчитать напряжение в последовательности точек 3-2-1-4-3 этой же схемы:

kirhgof28

Все это будет более понятно, если перерисовать нашу последовательную цепь таким образом, чтобы все ее компоненты находились на одной линии:

kirhgof29

Перед вами все та же последовательная цепь, только ее компоненты расположены иным способом. Обратите внимание на полярность напряжений резисторов относительно батареи: напряжение последней отрицательно слева и положительно справа, тогда как напряжения на всех резисторах ориентированы в другую сторону (положительны слева и отрицательны справа). Различия в полярности обусловлены тем, что резисторы сопротивляются потоку электронов, производимому батареей.

На следующем рисунке вы можете увидеть показания цифровых вольтметров на каждом компоненте этой цепи:

kirhgof30

Если мы произведем замеры напряжения на группах компонентов, начиная с левой стороны цепи (с резистора R1), то увидим, что напряжения складываются алгебраически (к нулевому результату):

kirhgof31

То, что напряжения последовательной цепи складываются, является очевидным фактом, и в этом сложении очень важную роль играет полярность напряжения. Измеряя напряжение на резисторах R1, R1—R2, R1—R2—R3 (символ двойного тире "—" используется для того, чтобы показать последовательное соединение между резисторами R1, R2, и R3) мы видим, что его величина (хоть и отрицательная) последовательно увеличивается от начальной точки к каждому последующему резистору. Такое увеличение является следствием одинаковой ориентации (полярности) напряжения на всех резисторах ("+" слева, "-" справа). Сумма напряжений на резисторах R1, R2, и R3 нашей схемы будет равна 45 вольт, что аналогично напряжению на выводах батареи, за тем исключением, что полярность батареи ("-" слева, "+" справа) противоположна полярности суммарного напряжения резисторов. Таким образом, общее напряжение на всей линейке компонентов схемы будет равно нулю (45В + (-45В) = 0).

Читайте так же:
Как отремонтировать дрель своими руками видео

Полученное в результате суммирования итоговое напряжение, величиной 0 вольт, вполне закономерно. Посмотрев на схему можно увидеть, что ее крайняя левая точка (точка № 2 слева от резистора R1) непосредственно связана с крайней правой точкой (точкой № 2 справа от батареи). Поскольку непосредственно связанные точки являются электрически общими по отношению друг к другу, напряжение между ними должно быть равно нулю.

Второй закон Кирхгофа будет работать не только на последовательной конфигурации цепи, но и на любой другой. Посмотрите как он работает на следующей параллельной цепи:

kirhgof32

В параллельной цепи, как вы знаете, напряжение на каждом резисторе равно напряжению батареи, которое в нашем случае составляет 6 вольт. Подсчитав напряжение в последовательности точек 2-3-4-5-6-7-2, мы получим:

kirhgof33

Обратите внимание, суммарное напряжение мы обозначили как U2-2. А обозначили мы его так из за того, что начали измерения в точке 2, и закончили в этой же точке. Алгебраическая сумма напряжений в этом случае будет равна напряжению между точками 2-2, которое конечно-же равно нулю.

Тот факт, что эта цепь параллельная а не последовательная, никак не влияет на справедливость второго закона Кирхгофа. Любая схема вообще может быть "черным ящиком", а ее конфигурация может быть полностью скрыта от нашего взгляда. При этом, если контрольные точки этой схемы будут открыты, то замеры напряжения между ними подтвердят верность данного закона:

kirhgof34

Попробуйте в вышеприведенной схеме измерить напряжения любой последовательностью шагов между любыми ее точками (возвращаясь при этом в исходную точку), и вы увидите, что алгебраическая сумма напряжений всегда равна нулю.

Последовательность точек, к которой можно применить закон, не обязательно должна соответствовать реальному потоку электронов. Единственным условием, которое необходимо выполнить, является то, что последовательность должна начинаться и заканчиваться в одной точке цепи, при этом полярность при проведении замеров должна неукоснительно соблюдаться. Давайте рассмотрим абсурдный пример, замерив напряжения в последовательности точек 2-3-6-3-2 этой же цепи:

kirhgof32

kirhgof35

Второй закон Кирхгофа можно использовать для определения неизвестного напряжения сложной цепи, в которой остальные напряжения выбранной последовательности точек известны. Возьмем в качестве примера следующую сложную цепь (представляющую две последовательные цепи, основания которых соединены проводом):

kirhgof36

Для упрощения задачи мы опустим значения сопротивлений, оставив только значения напряжений на каждом резисторе. Так как две изображенные на рисунке последовательные схемы имеют общий провод (провод 7-8-9-10), у нас появляется возможность измерить между ними напряжение. Если мы хотим определить напряжение между точками 4 и 3, то его нужно подставить в уравнение Второго закона Кирхгофа как неизвестное:

kirhgof37

kirhgof38

kirhgof39

kirhgof40

kirhgof41

В ходе измерения напряжений в последовательности точек 3-4-9-8-3 мы записывали числа так, как их отображал цифровой вольтметр. При этом красный щуп прибора подсоединялся к первой точке, а черный — ко второй. Таким образом, напряжение от точки 9 до точки 4 оказалось положительным +12 вольт, так как красный щуп подключался к точке 9, а черный — к точке 4. Напряжение от точки 3 до точки 8 так же положительно + 20 вольт (красный щуп к точке 3, черный — к точке 8). И напряжение от точки 8 до точки 9 имеет нулевое значение, потому что эти две точки являются электрически общими.

Итак, окончательным ответом для напряжения от точки 4 до точки 3 будет -32 вольта. Именно такое напряжение покажет вольтметр, если мы подключим его красный щуп к точке 4, а черный — к точке 3:

Читайте так же:
Как правильно варить тонкий металл инвертором

kirhgof42

Если бы наше уравнение начиналось с U3-4 вместо U4-3, то последовательность измерений проводилась бы при противоположной ориентации тестовых проводов мультиметра. В этом случае окончательный ответ был бы следующим — U3-4=+32 В:

kirhgof43

Здесь важно понять, что оба подхода являются правильными. В обоих случаях мы достигаем правильной оценки напряжения между точками 3 и 4.

Закон Кирхгофа

Немецкий учёный Густав Роберт Кирхгоф является одним из великих физиков девятнадцатого века. Будучи отличным знатоком математики, он оставил богатейшее наследство из научных работ в области математической физики. Рядом с достижениями учёного в различных областях науки достойное место занимают первый и второй законы Кирхгофа.

Густав Роберт Кирхгоф

Густав Роберт Кирхгоф

Термины, введённые в правила электротехники

Появление законов Кирхгофа дало возможность рассчитывать разнообразные электрические схемы. Для формулировки этих правил в электротехнике были введены конкретные термины:

  • ветвь;
  • узел;
  • контур.

Ветви

Ветви – это части электрических цепей, соединяющие соседние узлы. Ветвь – это отрезок, ограниченный двумя полюсами электрической системы.

Этим термином обозначают точки схождений нескольких разных проводников. Узлом может быть точка схождения трёх или нескольких ветвей.

Контур

Этим словом обозначают несколько ветвей, образующих замкнутую электрическую цепь. Замкнутая схема представляет систему, в которой однократное прохождение тока из определённой точки (узла) по всей схеме возвращается в исходный узел. Элементы этой системы определяются как единая схема – контур.

Обратите внимание! Ветви и узлы могут быть одновременно частями разных контуров.

Первый закон Кирхгофа

Принципы зависимости сил токов и величин напряжений, электродвижущей силы (ЭДС) и сопротивления всего контура, представляющего последовательные соединения источников и приёмников электричества, построены на основании закона Ома. Зачастую ЭДС из конкретной точки вхождения может проходить разными путями. В обособленной цепи ток не накапливается, иначе это может вызвать изменение значений потенциалов точек.

Действие закона Кирхгофа в разветвлённой цепи

В нижеприведённой схеме разветвлённой цепи можно увидеть, как действует первое правило Кирхгофа. В точке «А» провод разделяется на 4 проводника, сходящихся затем в узле «В».

На рисунке символы означают:

  • I – ток, входящий в точку А и одновременно выходящий из точки В;
  • I1, I2, I3, I4 – токи в ветвях.

Согласно правилу последовательного соединения сопротивлений (R), соотношение токов будет следующим:

I = I1 + I2 + I3 + I4.

Схематичное изображение первого правила Кирхгофа

Схематичное изображение первого правила Кирхгофа

Параллельное соединение сопротивлений (рис. выше) направляет ток по 4 веткам. Это понижает сопротивление всего контура и повышает общую проводимость. Она, на основании 1 закона Кирхгофа, составляет сложение проводимостей 4 веток. Применяя закон Ома, на всех участках силы тока можно обозначить следующим образом:

  • I = U/R;
  • I1 = U/R1;
  • I2 = U/R2;
  • I3 = U/R3;
  • I4 = U/R4.

Следовательно, можно записать следующее:

Если исключить в обеих частях расчёта значение U, уравнение приобретёт простейшее выражение:

Для двух параллельных сопротивлений R1 и R2 получают такое выражение:

Следовательно, сопротивление цепи будет таким:

R = R1 х R2/ R1 + R2.

В итоге учёный определил физический смысл первого закона Кирхгофа. Первый закон Кирхгофа гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из этой точки, за это же время.

Первое правило Кирхгофа

Первое правило Кирхгофа

Второй закон Кирхгофа

Правило имеет второе название – закон напряжений. Второе правило Кирхгофа выражают в виде уравнения Кирхгофа:

Формула 2 закона Кирхгофа

Формула 2 закона Кирхгофа

Это означает, что в какой-либо замкнутой цепи падение напряжений равняется сумме ЭДС, находящихся в пределах этого контура.

Суть второго закона Кирхгофа можно выразить простыми словами: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал достигает своей первоначальной величины. То есть утечка потенциала (энергии) в пределах замкнутой электрической цепи равняется нулю».

Читайте так же:
Как установить тиски в гараже

Прежде, чем приступить к расчёту разветвленной схемы, подсчитывают необходимые уравнения, соответствующие 2 закону Кирхгофа. Количество уравнений равно разнице числа веток и числа узлов в контуре плюс единица.

При написании формул по закону Кирхгофа надо охватывать весь контур. Это даёт возможность определения токов и напряжений на всех участках закрытой системы. На плане указывают положительные движения токов. Одновременно обозначают направление обхода контура. Обычно обход производят по кругу движения стрелок часов.

Если в итоге вычислений ток получается отрицательным, то движение меняют в обратную сторону. При написании уравнений каждый раз включают последующую ветвь, не учтённую в предыдущих уравнениях.

Важно! Первый и второй закон Кирхгофа верны для всех нелинейных и линейных цепей. Абсолютно никакого значения не имеют перемены напряжений и токов в течение определённого времени.

На нижнем изображении приведён пример разветвлённой цепи для написания уравнений согласно теореме Кирхгофа.

Образец разветвлённой цепи

Образец разветвлённой цепи

Согласно приведенной схеме, уравнения будут такими:

Значение законов Кирхгофа для мировой науки

Они на сегодняшний день сохранили своё актуальное значение для такой отрасли науки, как электротехника. Наряду с другими методиками расчётов, эти правила необходимы для разработки схем в области радиоэлектроники. Законы до сих пор не устарели и применяются для создания и развития новых компьютерных технологий.

Благодаря своим открытиям, немецкий учёный возглавил блестящую плеяду учёных-физиков второй половины девятнадцатого века. Его достижения в развитии науки пришлись по времени к началу индустриальной революции в промышленном развитии Германии. Основные правила законов электротехники легли в методику получения новейших технологий и способствовали появлению совершенно неизвестных ранее отраслей промышленности.

Середина 19 века ознаменовалась чередой открытий основных законов электричества, среди которых главенствующее положение заняли законы Кирхгофа. Именно они создали базу для математических расчётов электрических цепей.

Содержание обоих законов не составляет особых сложностей и вполне доступно для понимания широкому кругу людей.

Дополнительная информация. Прикладная природа правил вместе с другими методиками способствуют разрешению множества задач электротехники. Простая формулировка законов дала возможность применить методы линейной алгебры.

Во многих странах открытия учёного именуют по-разному. Большинство представителей научной общественности склонны к тому, что законы вернее называть правилами. В нашей стране приняты названия в обоих вариантах.

Основы электротехники и электроники: Курс лекций , страница 3

При свертке параллельных ветвей эквивалентное сопротивление всегда меньше наименьшего из сворачиваемых.

Если параллельно соединены n одинаковых сопротивлений (Рис. 3.3), эквивалентное сопротивление в n раз меньше сопротивления любой из ветвей.

Если на участке цепи параллельно соединены лишь два элемента (Рис. 3.4), выражение (3.2) упрощается. В этом случае эквивалентное сопротивление можно определить как отношение произведения двух сопротивлений к их сумме:

4. ОСНОВНЫЕ ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

К основным законам электрических цепей относятся закон Ома и законы Кирхгофа.

Закон Ома

Если в ветви не содержится ЭДС, к ней применим уже известный закон Ома для пассивного участка цепи (1.1). Его можно сформулировать и следующим образом. Ток в ветви, не содержащей ЭДС, равен падению напряжения в ветви, деленному на сопротивление ветви (Рис. 4.1):

Закон Ома для ветви, содержащей ЭДС, позволяет найти ток этой ветви по известной разности потенциалов на концах ветви. Ток в ветви, содержащей ЭДС, равен дроби, знаменатель которой – это сопротивление ветви. В числителе дроби – напряжение на концах ветви плюс алгебраическая сумма ЭДС, заключенных между концами ветви. С плюсом берутся напряжения и ЭДС, направление которых совпадает с направлением тока, с минусом – противоположные.

В частности, ток в ветви, изображенной на Рис. 4.2, равен:

Первый закон Кирхгофа

В любом узле цепи алгебраическая сумма токов равна нулю. При этом, токи, направленные к узлу, принято считать положительными, токи, направленные от узла, принято считать отрицательными (Рис. 4.3).

Читайте так же:
Коптильня из духовки своими руками

По первому закону Кирхгофа можно написать столько уравнений, сколько узлов содержит схема. Но не все они будут независимыми. Если схема содержит узлов, независимыми будут уравнений. Оставшееся уравнение будет являться следствием всех предыдущих.

Второй закон Кирхгофа

В любом замкнутом контуре цепи алгебраическая сумма напряжений равна алгебраической сумме ЭДС, включенных в контур.

При этом, положительными считаются те напряжения и ЭДС, которые совпадают с направлением обхода контура, отрицательными считаются напряжения и ЭДС, которые противоположны направлению обхода контура. Направление обхода контура можно выбирать произвольно.

Алгоритм составления уравнения по второму закону Кирхгофа для замкнутого контура цепи

Для заданного контура (Рис. 4.4 а) уравнение по второму закону Кирхгофа составляется в следующем порядке:

  1. Задается направление токов в ветвях (Рис. 4.4 б).
  1. Выбирается направление обхода контура (Рис. 4.4 в).

  1. Записывается уравнение, в левой части которого – сумма падений напряжений на сопротивлениях ветвей. В правой части – сумма ЭДС контура.

Примечание: Падение напряжения на сопротивлении ветви записывается в соответствии с известным уже законом Ома (1.1):

Применение второго закона Кирхгофа для незамкнутого участка цепи

Второй закон Кирхгофа справедлив только для замкнутого контура. При этом, любой незамкнутый участок цепи можно дополнить до замкнутого контура с помощью напряжения в разрыве незамкнутого участка.

Незамкнутый участок цепи abcd изображен на Рис. 4.5 а.

Дополняем участок до замкнутого контура, добавляя напряжение между незамкнутыми точками c и d (Рис. 4.5 б). Теперь для контура abcd можно записать второй закон Корхгофа:

Применение законов Кирхгофа при наличии в цепи источника тока

Источник тока имеет бесконечно большое сопротивление, поэтому не образует замкнутого контура и не может входить в уравнения второго закона Кирхгофа. Однако, в уравнениях первого закона Кирхгофа источник тока должен содержаться обязательно.

При необходимости записать уравнение по второму закону Кирхгофа для контура, содержащего источник тока, его заменяют напряжением на выводах источника тока.

Написать уравнение по первому закону Кирхгофа для узла a и уравнение по второму закону Кирхгофа для контура abcd (Рис. 4.6 а).

Уравнение по первому закону Кирхгофа для узла a содержит источник тока и имеет вид:

Для того чтобы написать уравнение по второму закону Кирхгофа для контура abcd, заменяем источник тока напряжением на его выводах (Рис. 4.6 б), задаем направление обхода контура против часовой стрелки и получаем:

Для упрощения расчетов источник тока с параллельным сопротивлением можно заменить на эквивалентный источник ЭДС (Рис. 4.7). После расчета необходимо обязательно вернуться к исходной схеме.

Независимый контур цепи

В принципе, по второму закону Кирхгофа можно составить столько уравнений, сколько контуров содержит цепь. Но не все эти уравнения будут независимыми. Для определения независимости уравнений по второму закону Кирхгофа вводится такое понятие как независимый контур цепи.

Независимый контур цепи – это такой контур, который содержит хотя бы одну новую ветвь, не вошедшую в другие контуры цепи.

Независимые контуры в общем случае выбираются произвольно, но проще всего выбирать их так, чтобы они совпадали с ячейками цепи (Рис. 4.8 б).

Если схема содержит ветвей и узлов, число независимых контуров равно

Схема на Рис. 4.8 б содержит три независимых контура.

5. СИСТЕМА УРАВНЕНИЙ ПО ЗАКОНАМ КИРХГОФА ДЛЯ РАСЧЕТА ТОКОВ ЦЕПИ

Законы Кирхгофа можно использовать для расчета токов в ветвях цепи. Главное требование при этом – получение системы независимых уравнений, в которой число неизвестных равно количеству токов, подлежащих определению.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector