Tehnik-ast.ru

Электро Техник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

IV Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке

В каком году появилось электричество в домах

  • Главная
  • КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

Автор работы награжден дипломом победителя III степени

Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.

Так откуда же берется электричество, которое поступает к нам в дом по проводам?

В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.

В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.

Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.

Цель исследования: изучение возникновения электричества.

Задачи исследования:

Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.

Понять, как устроен генератор, который вырабатывает электричество.

Рассмотреть, как устроена батарейка (переносной источник энергии).

Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.

Изготовить самодельную батарейку из соленой воды и металлических пластинок.

Содержание работы:

Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.

Электростанции

Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).

Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.

Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир. Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]

Рис.2. Схема работы ТЭЦ

Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0 С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].

Рис. 3 Схема работы АЭС

Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].

Рис. 4 Схема работы гидроэлектростанции

Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].

Рис. 5 Схема работы ветроэлектростанции

Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).

Читайте так же:
Какие бывают обратные клапана

Рис. 6 Схема работы солнечной электростанции

Устройство генератора

Так как же устроен генератор, который вырабатывает электричество?

Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].

Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.

Рис.7 Схема устройства генератора

Но что будет, если к генератору подвести электрический ток?

Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.

Рис.8 Схема устройства двигателя

Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.

Батарейки

Батарейка — это, емкость в которой происходит химическая реакция. Самая простая батарейка состоит из цинкового стаканчика, графитового стержня и электролита между ними (рис.9).

Рис.9 Устройство батарейки

В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].

Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.

Рис.10 Самодельная батарейка

Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.

Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.

Рис. 11 Самодельная батарейка

Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.

Экспериментальная часть:

В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.

Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.

Рис. 12 Первый эксперимент

Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.

Рис.13 Второй эксперимент

В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.

Рис.14 Третий эксперимент

В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.

Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.

Рис.15 Четвертый эксперимент

Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).

Выводы

В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.

Читайте так же:
131 6 Симистор даташит

Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.

Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.

В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.

В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.

Но, у меня остались вопросы, на которые мне предстоит найти ответы:

Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.

О, сколько нам открытий чудных

Готовит просвещенья дух,

И опыт – сын ошибок трудных,

И гений, парадоксов друг.

1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.

2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.

3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.

Кто и когда изобрёл электричество?

История великих открытий по годам: кто изобрёл электричество

Современный мир невозможен без электричества. Сейчас никто и не задумывается о технологии его производства, а в древние времена даже не знали такого слова. Но пытливые умы находились и тогда. В 700-м году до нашей эры наблюдательный греческий философ Фалес заметил, что янтарь начинал притягивать лёгкие предметы, когда происходило трение с шерстью. На этом знания приостановились.

Дальнейшее развитие знаний

Когда изобрели электричество

Только по прошествии многих столетий эта отрасль знаний получила дальнейшее развитие. Английский физик и по совместительству врач при королевском дворе Уильям Гильберт, окончивший лучшие ВУЗы Оксфорда и Кембриджа, стал основоположником науки об электричестве. Он изобрёл первый прообраз электроскопа под названием версор и с его помощью выяснил, что не только янтарь, но и другие камни имеют свойства притягивать мелкие предметы (соломинки). Среди «электрических» минералов:

  • алмаз;
  • аметист;
  • стекло;
  • опал;
  • карборунд;
  • сланцы;
  • сапфир;
  • янтарь.

С помощью аппарата учёный смог сделать несколько интересных открытий. Среди них: серьёзное влияние пламени на электрические свойства тел, которые были приобретены при трении. А ещё Гильберт высказал предположение, что гром и молния — явления электрической природы.

Само понятие «электричество» впервые прозвучало в XVI веке. В 1663 году бургомистром Магдебурга по имени Отто фон Герике была создана специальная машина для исследования. С её помощью можно было наблюдать эффект притяжения и отталкивания.

Первые опыты с электричеством

В 1729 году в Англии был проведён первый опыт передачи электричества на небольшое расстояние учёным Стивеном Греем. Но в процессе было определено, что не все тела могут передавать электричество. Через 4 года после первых серьёзных исследований учёный из Франции Шарль Дюфе выявил, что существует два типа заряда электричества: стеклянного и смоляного в зависимости от материала, используемого для трения.

В середине XVII века в Голландии Питер ван Мушенбрук создаёт конденсатор под названием «Лейденская банка». Немного времени спустя появляется теория Бенджамина Франклина и проводятся первые исследования, которые опытным путём подтверждают теорию. Проведённые исследования стали основой для создания громоотвода.

После этого была открыта новая наука, которую начинают изучать. А в 1791 году выпускается «Трактат о силе электричества при движении мышц» автором Гальвани. В 1800 году итальянский изобретатель Вольта стал тем, кто создал новый источник тока под названием Гальванический элемент. Этот аппарата представляет собой объект в виде столба из цинковых и серебряных колец, разделённых бумажками, смоченными в солёной воде. Через пару лет русский изобретатель Василий Петров открывает «Вольтову дугу».

Читайте так же:
Как образовалась железная руда

Примерно в том же десятилетии физик Жан Антуан Нолле изобрёл первый электроскоп, зарегистрировавший более быстрое «стекание» электричества с тел острой формы и сформировал теорию о влиянии тока на живые организмы. Этот эффект стал основой изобретения медицинского электрокардиографа. С 1809 году началась новая эпоха в области электричества, когда англичанин Деларю изобрёл лампу накаливания. Уже через 100 лет появились современные лампочки с вольфрамовой спиралью и заполнением инертным газом. Их разработчиком стал Ирвинг Ленгмюр.

Сложные исследования и великие открытия

В начале XVIII века Майкл Фарадей написал трактат об электромагнитном поле.

Электромагнитное взаимодействие было обнаружено при проведении опытов датским учёным Эрстедом в 1820 году, а уже через год физик Ампер связывает электричество и магнетизм в своей теории. Эти исследования стали основой для появления современной науки — электротехники.

В 1826 году Георг Симон Ом на основании проведённых опытов смог сформулировать основной закон электрической цепи и ввёл новые термины электротехники:

  • «проводимость»;
  • «электродвижущая сила»;
  • «падение напряжения в цепи».

Последователем Эрстеда стал Андре-Мари Ампер, который сформулировал правило определения направления тока на магнитную стрелку. Эта закономерность получила множество названий, одно из которых «правило правой руки». Именно он изобрёл усилитель электромагнитного поля — многовитковые катушки, состоящие из медного провода с установленными сердечниками из мягкого железа. На основании этой разработки в 1829 году был изобретён электромагнитный телеграф.

Новый виток исследований

История появления электричества

Когда известный английский учёный в области физики Майкл Фарадей ознакомился с работой Х. Эрстеда, он провёл исследования в области взаимосвязи электромагнитных и электрических явлений и обнаружил, что магнит вращается вокруг проводника тока и, наоборот, проводник — вокруг магнита.

После этих опытов учёный ещё 10 лет пытался трансформировать магнетизм в электрический ток, а в результате открыл электромагнитную индукцию и основы теории электромагнитного поля, а также помог сформировать основу для появления новой отрасли науки — радиотехники. В 20 годы прошлого столетия, когда на территории СССР была начата организация масштабная электрификация, появился термин «лампочка Ильича».

Так как многие разработки проводились параллельно в разных странах, историки спорят о том, кто изобрёл электричество первым. В развитие науки об электричестве вложили свои силы и знания многие учёные-изобретатели: Ампер и Ленц, Джоуль и Ом. Благодаря таким усилиям современный человек не испытывает проблем с организацией подачи электричества в свои дома и другие помещения.

Килобит•час

Криптофермы заплатят за электричество больше населения

Как выяснил “Ъ”, энергетики научились через суд повышать тарифы на электроэнергию для ферм по майнингу криптовалюты в частных домах. «Иркутскэнергосбыт» смог доказать, что фермы ведут коммерческую деятельность, но покупают электроэнергию по низким тарифам для населения. Однако из поданных 85 исков компания пока выиграла только девять. Участники рынка не считают такой способ борьбы эффективным и ждут комплексного решения от регуляторов.

Фото: Сафрон Голиков, Коммерсантъ

Фото: Сафрон Голиков, Коммерсантъ

«Иркутскэнергосбыт» (гарантирующий поставщик электроэнергии региона, входит в «Иркутскэнерго») начал массово судиться с владельцами майнинговых ферм в частных домах региона. Компания считает, что фермы ведут предпринимательскую деятельность, при этом покупая электроэнергию по низким тарифам для населения. С начала года «Иркутскэнергосбыт» подал 85 исков к владельцам ферм на сумму 73,3 млн руб., сообщили “Ъ” в компании. Выиграть удалось пока только девять дел: по решению суда частные фермы перевели на коммерческие тарифы. Также «Иркутскэнергосбыт» сможет вернуть 18,7 млн руб. после перерасчета тарифа.

Иркутская область считается столицей майнинга криптовалюты в России из-за самых низких цен на электроэнергию: фермы используют много энергии для работы вычислительного оборудования и систем охлаждения. Тариф в сельской местности региона для населения — 0,86 руб. за 1 кВт•ч, а для малых предприятий — около 3,6 руб. за 1 кВт•ч.

С начала года «Иркутскэнергосбыт» выявил более 1 тыс. случаев серого майнинга в регионе.

Такие объекты опасны для стабильного энергоснабжения и могут приводить к авариям.

«Иркутскэнергосбыт» впервые выявил майнинговую ферму в частном секторе в поселке Плишкино в 2019 году. Дом площадью 148,5 кв. м потреблял 193 тыс. кВт•ч в месяц (примерно 22% от потребления всего поселка), что явно больше бытового потребления. «Иркутскэнергосбыт» смог в Свердловском районном суде Иркутска доказать, что владелец вел коммерческую деятельность по добыче криптовалюты. Ему пересчитали тарифы и попросили вернуть долг по оплате уже потребленной электроэнергии. В 2021 году компания выиграла суд в последней кассационной инстанции. Владельцу предъявлен перерасчет на сумму более 7,5 млн руб., из них выплачено уже 6,9 млн руб., сообщили “Ъ” в компании.

Читайте так же:
Инструмент для плетения сетей

Как российские нефтяники хотят заработать на майнинге

Участники рынка не верят в эффективность подобных методов. «Выявлять и оспаривать каждый подобный случай в ручном режиме затратно и неэффективно. Необходимо нормативное решение, которое исключит использование льготных бытовых тарифов для коммерческого электропотребления в жилом секторе»,— говорят в «Сообществе потребителей энергии».

Сбытовые компании не должны заниматься квалификацией деятельности потребителя, отмечают в Ассоциации гарантирующих поставщиков и энергосбытовых компаний. У сбытовых компаний часто не хватает доказательной базы для судов: владельцы отрицают потребление электроэнергии в коммерческих целях и не пускают на территорию домовладения. «Более эффективный механизм — введение дифференцированного тарифа для населения»,— считают в ассоциации. В Минэнерго на это говорят, что решение о дифференциации тарифов для населения относится к социально-экономической политике и должно приниматься на уровне правительства.

Алексей Моисеев, замминистра финансов РФ, о майнинге криптовалют, 14 октября:
«По сути, это потребление электроэнергии, которое уходит в ничто».

«Выходом из ситуации была бы отмена перекрестного субсидирования (доплата бизнеса за сниженные тарифы населения.— “Ъ” ). Но по социально-политическим причинам это сделать невозможно. В Иркутской области очень большой объем перекрестного субсидирование: цена для коммерческих потребителей в три раза больше, чем у населения»,— говорит Сергей Сасим из Института экономики и регулирования инфраструктурных отраслей НИУ ВШЭ.

Кто придумал электричество

В наше время жизнь без электричества просто остановится. Однако, так было не всегда – раньше люди и слова такого не слышали. На протяжении веков, благодаря усилиям поколений талантливых ученых и исследователей, человечество продвигалось к открытию и использованию этого чудесного природного явления. Освоение электрического тока можно смело считать одним из главных достижений человечества.

Электричество – одна из основ современной цивилизации

Электричество – одна из основ современной цивилизации

Открытие электричества: первые шаги

Точного ответа на вопрос, когда появилось электричество, не существует. Как природная сила оно существовало всегда, а вот долгий путь к изобретению и использованию электричества был начат еще в 8 веке до н.э. История даже сохранила имя человека, давшего название этому явлению. Философ Фалес Миллетский, проживавший в Древней Греции обратил внимание на то, что натертый шерстью янтарь может притянуть к себе небольшие предметы за счет какой-то силы. «Янтарь» по-гречески означает «электрон», отсюда и пошло «электричество».

Фалес Милетский – основоположник исследований электричества

Фалес Милетский – основоположник исследований электричества

Настоящее зарождение исследований в этой области история электричества относит к середине 17 века, и связано оно с именем бургомистра из немецкого Магдебурга Отто ф.Герике (по совместительству ученый-физик и изобретатель). Он в 1663 году, после изучения трудов Фалеса, создал особую машину для исследования эффектов электрического притяжения и отталкивания, это и был первый в мире электрический механизм. Аппарат состоял из серного шарика, который крутился на металлическом стержне и, подобно янтарю, притягивал и отталкивал различные предметы.

Среди первопроходцев, способствовавших появлению в нашей жизни электричества, можно назвать англичанина У. Гилберта, который служил физиком и медиком при дворе. Он считается основоположником электротехники (науки о свойствах и применении электричества), изобрел электроскоп и сделал несколько замечательных открытий в этой области.

Новые открытия

В 1729 году англичане Стивен Грей и Грэнвилл Уилер впервые обнаружили, что электрический ток свободно проходит через некоторые тела (названные проводниками) и не проходит через другие (непроводники), это было первым шагом к использованию электроэнергии в промышленных целях.

В Англии же впервые в мире пытаются передать электричество на какое-то расстояние, занимался этим ученый С. Грей, в процессе опытов он также столкнулся с разной степенью проводимости тел.

Профессора математики Голландца П.ван Мушенбрука называют тем, кто изобрел первый конденсатор для электричества – это знаменитая «лейденская банка» (названа по имени родного города изобретателя). Прибор представлял собой обычную стеклянную банку, с обоих концов запаянную тонкими листами сплава олова со свинцом. Таким образом, появляется возможность накапливать электричество.

Лейденская банка – первый электрический накопитель

Лейденская банка – первый электрический накопитель

Известный американский политический деятель Бенджамин Франклин также был среди тех, кто открыл электричество для широкого применения в жизни. Он опытным путем определил, что электрические заряды делятся на положительные и отрицательные, а также изучил электрическую природу молний.

На основе открытий Франклина в России ученые Рихман и великий Михайло Васильевич Ломоносов изобрели громоотвод, доказав на практике, что молнии получаются из разности потенциалов атмосферного электричества. Ломоносов вообще оказал огромное влияние на изучение электрических явлений (особенно атмосферных).

Молодая наука об электричестве продолжает стремительно развиваться – на протяжении 18-19 веков появлялись все новые открытия и изобретения, писались новые научные трактаты, главным предметом которых был электрический ток.

Читайте так же:
Зарядное для акб авто своими руками

Так, в 1791 году выпущена в свет книга об электричестве в мышцах человека и животных, возникающая при их сокращении, автором был итальянский физик Гальвани. Другой итальянец – Алессандро Вольта, был тем, кто создал в 1800 году доселе неизвестный источник тока, названный «гальванический элемент» (в честь того самого Гальвани), который через несколько сотен лет предстает в виде всем известной батарейки.

Гальванический элемент Вольта – прообраз современной батарейки

Гальванический элемент Вольта – прообраз современной батарейки

«Вольтов столб» был выполнен в виде собственно столба, отлитого из цинка и серебра, между слоями которых была проложена просоленная бумага.

Через несколько лет в России профессор физики из Санкт-Петербурга В. Петров представляет научному миру мощную электрическую дугу, назвав ее «Вольтова дуга». Он тот, кто придумал использовать свет от электричества для освещения внутри помещений. Были продемонстрированы возможности для использования электрических явлений в хозяйственной жизни. Собранная ученым батарея была действительно гигантской (длина – 12, а высота – около 3 метров), напряжение ее было постоянным и составляло 1700 вольт. Это изобретение положило начало опытам по созданию ламп накаливания и методов электрической сварки металлов.

Великие открытия в области электричества

Опыты Петрова в России способствовали тому, что в 1809 году ученый Деларю в Англии сконструировал первую в мире лампу накаливания. А сто лет спустя американский химик и Нобелевский лауреат И. Ленгмюр выпустил первую лампочку, у которой была светящаяся спираль из вольфрама, помещенная в запаянную колбу с инертным газом. Это дало старт новой эпохе. Многие ученые и в Европе, и в США, и в России проводили многочисленные опыты и исследования, чтобы лучше понять природу электричества и поставить его на службу человеку.

Так, в 1820 году датчанин Эрстред выявил взаимодействие электрических частиц, а в 1821 знаменитый Ампер выдвинул и доказал теорию о связи магнетизма и электрических явлений. Свойства электромагнитного поля углубленно исследовал англичанин М. Фарадей, он же открыл закон электромагнитной индукции, гласящий, что в замкнутом проводящем контуре при временном изменении магнитного потока возникают электрические импульсы, а также сконструировал первый электрогенератор. Работы этих ученых и десятков других менее известных привели к появлению новой науки, которой немецкий инженер Вернер фон Сименс дал название «электротехника».

В 1826 году Г.С.Ом после многочисленных опытов выдвинул закон электроцепи (известный также, как «закон Ома»), а также новые термины: «проводимость», «электрическая движущая сила», «напряжение электротока». Его последователь, А-М. Ампер, вывел знаменитое правило «правой руки», т.е. определение направлений течения электротока с помощью магнитной стрелки. Он же изобрел прибор для усиления электрополя – катушки медных проводов вокруг железных сердечников. Эти наработки стали предвестниками одного из главных изобретений в области электротехники (электромагнитного телеграфа) немецким учёным Самуилом Томасом Земмерингом.

Электромагнитный телеграф Земмеринга

Электромагнитный телеграф Земмеринга

В России изобретатель Александр Лодыгин придумал лампочку, максимально напоминающую современные аналоги: вакуумная колба, внутри которой помещена спиралевидная нить накаливания, сделанная из тугоплавкого вольфрама. Ученый продал права на это изобретение американской корпорации «Дженерал Электрик», которая запустила их в массовое производство. Поэтому справедливо было бы считать первооткрывателем лампочек именно россиянина, хотя во всех американских учебниках физики «отцом лампочки» значится их ученый Т.Эдисон, который тоже внес немалый вклад в изобретение электричества.

Современный виток исследований

Недавние грандиозные открытия в области электричества связаны с именем великого Николы Теслы, значение и масштабы которых до сих пор не оценены по достоинству. Этот гениальный человек изобрел такие вещи, которые еще только предстоит использовать:

  • синхронный генератор и асинхронный электродвигатель, совершившие промышленную революцию в современном мире;
  • флюоресцентные лампы для освещения больших пространств;
  • концепция радио была представлена Теслой на несколько лет раньше «официального отца» радио – Маркони;
  • дистанционно управляемые приборы (первой была лодка на больших батареях, управляемая с помощью радио);
  • двигатель с вращающимися магнито-полями (на этой основе сейчас производят новейшие автомобили, не нуждающиеся в бензине);
  • промышленные лазеры;
  • «Лазер Башня» – первый в мире прибор для беспроводного коммуникацирования, прообраз всемирной сети Интернет;
  • множество бытовых и промышленных электроприборов.

Гений в мире электричества – Никола Тесла

Гений в мире электричества – Никола Тесла

В России в Советские годы проводилась массированная электрификация, массово производились «лампочки Ильича», советские ученые развивали и совершенствовали познания в электричестве и электротехнике.

Все знают, что такое электричество, и сталкиваются с ним постоянно в повседневной жизни. Однако однозначно назвать того, кто изобрел электричество, невозможно. Каждый из великих ученых и исследователей внес свой неоценимый вклад в дело изучения и использования этого замечательного природного явления.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector