Tehnik-ast.ru

Электро Техник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать усилие затяжки без динамометрического ключа

Как рассчитать усилие затяжки без динамометрического ключа

Единицы измерения момента затяжки резьбовых соединений Двутавровые балки в конструкции здания

Моментом затяжки называют показатель усилия, который необходимо приложить для резьбовых соединений в процессе их завинчивания. Если крепеж был закручен с прикладыванием небольшого усилия, чем это было нужно, то при воздействии различных механических факторов резьбовое соединение может не выдержать, теряется герметичность скрепленных деталей, что влечет за собой тяжелые последствия. Так же и при чрезмерном усилии, резьбовое соединение или скрепляемые детали могут попросту разрушиться, что приведет к срыву резьбы или появлению трещин в конструкционных элементах.

Единицы измерения момента затяжки резьбовых соединений

Каждый размер и класс прочности резьбовых соединений имеет определенный момент затяжки при работе с динамометрическим ключом, который указывается в специальной таблице. При этом обозначение класса прочности изделия располагается на его головке.

Читать также: Бетон это смесь цемента воды

Основные резьбовые соединения в двигателе

Перечень основных резьбовых соединений двигателя и особенности их затягивания:

  • Головка блока цилиндров (ГБЦ). Очень важный узел, поэтому при её креплении к блоку важно соблюдать не только момент затяжки, но и порядок затягивания болтов. Как правило, ГБЦ затягивается довольно большим моментом, начиная от центра блока к краям в несколько заходов. Обязательно уточняйте эту информацию в руководстве по эксплуатации автомобиля (для каждой модели двигателя цифры и порядок могут быть различны)!
  • Клапанная крышка. Из-за того, что шпильки креплений клапанной крышки имеют маленький диаметр, при их затягивании следует соблюдать особую осторожность и не превышать необходимый момент. Порядок затягивания и момент также уточняйте в руководстве.
  • Свечи зажигания и свечи накаливания. Они затягиваются в произвольном порядке, но очень внимательно, так как в случае повреждения резьбы в двигателе потребуется дорогостоящий ремонт.
  • При затягивании форсунок также соблюдайте осторожность: из-за их небольшого диаметра легко повредить резьбу.
  • Затягивать подушки двигателя следует после полной установки двигателя, когда уже он своим весом держится на них. Если затянуть подушки до того, как двигатель полностью ляжет на них и будет убран домкрат, подушки быстро порвутся при эксплуатации.


Такой порядок затяжки ГБЦ чаще всего используется для рядных четырехцилиндровых двигателей

Маркировка и класс прочности деталей

Цифровое обозначение параметра прочности метрического болта указано на головке, и представлено в виде двух цифр через точку, к примеру: 4.6, 5.8 и так далее.

  1. Цифра до точки обозначает номинальный размер прочности предельного разрыва, рассчитывается как 1/100, и ее измерение осуществляется в МПа. К примеру, если на изделии указана маркировка — 9.2, то значение первого числа будет составлять 9*100=900 МПа.
  2. Цифра после точки является предельной текучестью по отношению к прочности, после расчета число необходимо умножить на 10, как указано в примере: 1*8*10=80 МПа.

Обозначение класса прочности метрических болтов

Предельная текучесть представляет собой максимальную нагрузку на конструкцию болта. Элементы, которые выполняются из нержавеющих видов стали, имеют обозначение непосредственно самого вида стали (А2, А4), и только после этого указывается предельная прочность.

К примеру, А2-50. Значение в подобной маркировке обозначает 1/10 прочностного предела углеродистой стали. При этом, изделия, для изготовления которых используется углеродистая сталь, имеют класс прочности – 2.

Обозначение прочности для дюймовых болтов отмечается насечками на его головке.

Обозначение класса прочности дюймовых болтов

Можно ли правильно затянуть резьбовые соединения ГБЦ без динамометрического ключа

Затягивать резьбовые соединения при отсутствии соответствующего оборудования категорически не стоит автолюбителям, которые решили самостоятельно поменять прокладку головки блока или притереть клапаны.

Динамометрическим ключом не всегда пользуются при затяжке опытные слесаря-ремонтники, которые способны почувствовать на практике предел прочности любого болта. Но такая способность приходит не сразу. Для этого нужно поработать динамометрическими ключами несколько лет.

Но даже специалисты с большим стажем болты крепления головки блока цилиндров на дорогих марках легковых автомобилей затягивают динамометрическим ключом, потому что эта операция напрямую влияет на долговечность работы силового агрегата. В экстренной ситуации, когда нет возможности воспользоваться динамометрическим ключом, можно применить вариант с механическим или электронным кантором. В приведённом ниже видео опытный слесарь объясняет зрителям, как можно правильно затянуть головку блока цилиндров без ключа. При этом стоит иметь в виду, что правильность выполнения работ стоит проверить с помощью угломера.

Видео: как проверить затяжку головки блока цилиндров

Затяжка болтов крепления ГБЦ на автомобилях с пробегом — дело ответственное, трудное, специфическое. Ответственное, потому что от правильной затяжки зависит нормальная и долговечная работа двигателя. Трудное, поскольку эту работу выполнять не совсем удобно из-за тесноты и недостаточной обзорности. Специфическое — потому что нужно болты подтягивать в несколько заходов, по определённой схеме, с помощью специального динамометрического инструмента.

В чем измеряется затяжное усилие?

Основная величина измерения усилия затяжки болтов – Паскаль (Па). Международная система «СИ» предполагает, что данной единицей измеряется как давление, так и механическое напряжение. Соответственно, Паскаль равен значению давления, которое вызывается силой равной одному Ньютону и равномерным образом распределяется на плоскости размером в 1 м2.

Читайте так же:
Лучший профессиональный моющий пылесос

Чтобы понять как можно конвертировать одну единицу измерения в другую, посмотрим пример:

  • 1 Паскаль = 1 Нютону/м2;
  • 1 МПаскаль = 1 Ньютону/мм2;
  • 1 Ньютон/мм2 = 10 кгс/см2.

Значения усилий затяжки для различных типов болтов (таблица)

Для более удобного и точного восприятия представлена таблица затяжки болтов динамометрическим ключом.

Класс прочности, Нм3.64.65.86.88.89.810.912.9
М51.712.283.84.566.096.858.5610.38
М62.943.926.547.8510.511.814.717.710
М87.119.4815.81925.328.435.542.713
М1014.319.131.838.150.857.271.585.817
М1224.432.654.365.186.997.712214719
М14395286.610413915619523422
М1659.979.913316021324029935924
М1882.511018322029333041349527
М2011715626031241646858570230
М2215821135242256363479295032
М242022704495397198091011121336

Читать также: Шланг для кровельной горелки

Также представим таблицу момента затяжки для дюймовых видов резьб по стандарту, который применяется в Соединенных Штатах.

ДюймыНмФунт
1/412±39±2
5/1625±618±4.5
3/847±935±7
7/1670±1550±11
1/2105±2075±15
9/16160±30120±20
5/8215±40160±30
3/4370±50275±37
7/8620±80460±60

Значения усилий затяжки для ленточного хомута с червячным зажимом

Ниже приведенная таблица содержит ряд данных про первоначальную установку ленточных хомутов на новом шланге, а также про повторную затяжку уже обжатых шлангов.
Размер хомута

НмФунт/Дюйм
16мм — 0,625 дюйма7,5±0,565±5
13,5мм — 0,531 дюйма4,5±0,540±5
8мм — 0,312 дюйма0,9±0,28±2
16мм4,5±0,540±5
13,5мм3,0±0,525±5
8мм0,7±0,26±2

Определение момента затяжки

Динамометрическим ключом

Подбор этого инструмента должен осуществляться так, чтобы затяжной момент на крепежном элементе был на 20-30% меньше, нежели значение максимального момента на используемом ключе. Если попытаться превысить допустимый лимит, то инструмент может легко сломаться.

Затяжное усилие и марка материала должны присутствовать на каждом изделии, способы расшифровки маркировки описаны выше.

Чтобы выполнить вторичную протяжку болтов, следует придерживаться следующих рекомендаций:

  1. Точно знать значение необходимого затяжного усилия.
  2. Выполняя контрольную проверку затяжки, необходимо выставлять усилие и проверять по кругу каждый крепежный элемент.
  3. Запрещается пользоваться динамометрическим ключом как обычным, его не стоит использовать для закрутки деталей, гаек и болтов, чтобы получить лишь примерное усилие . Его стоит использовать для выполнения контрольной протяжки.
  4. У динамометрического ключа должен быть запас для измерения момента усилия.

Без использования динамометрического ключа

Чтобы выполнить проверку нам понадобится наличие:

  • накидного или рожкового ключа;
  • пружинного кантера или весов, с пределом не менее 30 кг;
  • таблицы, которая содержит сведения об усилии затяжки болтов и гаек.

Момент затяжки является усилием, которое необходимо приложить на рычаг размером в 1 метр. К примеру, требуется выполнить затяжку гайки рассчитав для этого усилие в 2 кГс/м:

  1. Нам потребуется узнать какой длины ключ. Например, длина составляет 20 см или 0,2 метра.
  2. Разделить единицу на наше полученное значение: 1/0,2 = 5.
  3. Умножить полученный результат: 5*2кГс/м = 10 кг.

Далее на практическом опыте крепим к ключу крючок и присоединяем его к весам. Выполняем натяжку к нужному значению (которое мы получили в ходе расчетов) и начинаем постепенно закручивать/проверять. Применение такого кустарного метода все же лучше, нежели закручивать болты на «глаз». Погрешность будет присутствовать в любом случае, однако с увеличением усилия она будет уменьшаться . Все зависит от того, какого качества весы. Однако для проведения серьезных и профессиональных работ лучше обзавестись специальным динамометрическим ключом.

Как сделать динамометрический ключ своими руками, чтобы им было удобно пользоваться?

Метровая рукоятка ключа – не самый практичный вариант. Воспользуемся правилом расчета силы в зависимости от длины рычага. Формулы изучать нет смысла, величины рассчитываются в пропорциях.

Чем короче рычаг, тем большее усилие необходимо приложить (при сохранении величины крутящего момента):

  • рычаг 1 м, крутящий момент 10 Н.м., усилие 1 кг;
  • рычаг 0,5 м, крутящий момент 10 Н.м., усилие 2 кг;
  • рычаг 33 см (уже удобно работать), крутящий момент 10 Н.м., усилие 3 кг.

Для изготовления понадобятся:

  • рукоятка для работы с торцевыми головками под квадрат (для большей универсальности – с удлинителем).
  • хомут для фиксации точки измерения силы.
  • измерительное устройство: можно использовать обычные весы типа «безмен» или «кантор». Оптимальный диапазон измерений от 100 грамм до 50 кг.


Отмерив от центра вращения необходимую длину, закрепляем хомут на рычаге.


Устройство готово за 15 минут. Можно наметить несколько точек установки хомута, в зависимости от измеряемого момента.

Если не хочется делать своими руками отдельный инструмент – воспользуйтесь стандартным набором ключей (с одной стороны рожковый, с другой – накидной). Принцип действия такой же точно.


Для каждого ключа (поскольку они разной длины), заранее составляем таблицу расчета. Можно воспользоваться готовым приложением для смартфона:

Читайте так же:
Какой сваркой варят чугун

Вводим полученные данные (длина рычага, показания кантора), и видим готовый результат в ньютонах на метр.

Затягиваем болт самодельным динамометрическим ключом — видео

Вывод: Имея на руках безмен стоимостью 300 – 500 руб. (он есть практически в каждом доме), можно сэкономить на покупке фабричного динамометрического ключа: цена порядка 2000 – 3000 рублей.

Момент затяжки резьбового соединения

Момент затяжки резьбового соединения

Усилие, которое прикладывается к головке болта или к гайке при завинчивании, с помощью гаечного ключа или торцевой головки, можно оценить с помощью такого показателя как момент затяжки. Проконтролировать момент затяжки можно с помощью динамометрического ключа, при этом не производится непосредственного измерения величины приложенного момента к крепёжному изделию, а только контролируется достижение необходимого усилия. Таким образом применение динамометрического ключа для контроля момента затяжки резьбового соединения обеспечивает соблюдение требований по усилию затяжки с высокой степенью точности.

Если закрутить крепёж с меньшим усилием, чем это необходимо, то под воздействием вибраций или растягивающих нагрузок резьбовое соединение может ослабнуть, не обеспечивая необходимую силу прижатия соединяемых деталей между собой, что может привести к тяжелым последствиям. Наоборот, если приложить при затяжке болта большее усилие, чем требуется, то произойдет разрушение резьбового соединения.

Для выбора момента затяжки резьбового соединения необходимо учитывать наличие смазки или монтажной пасты в резьбовом соединении, так как в этом случае значительно снижается трение (коэффициент трения) в резьбе и необходимо уменьшать момент затяжки, что бы избежать разрушения резьбового соединения.

В таблице 1 и таблице 2 представлены предельные моменты затяжки для болтов и гаек из углеродистой стали с различными классами прочности при условии, что в соединении нет смазки.

Резьба метрическая с крупным шагом

Уровень нагрузок соответствует 90% от минимального предела текучести

Коэффициент трения — 0,14

РезьбаОсевая нагрузка, кНМомент затяжки, Нм
Класс прочности
Мшаг8.810.912.98.810.912.9
M40.74.306.307.403.34.85.6
M50.87.0010.312.06.59.511.2
M61.09.9014.517.011.316.519.3
M81.2518.126.631.127.340.146.9
M101.528.842.249.454.079.093.0
M121.7541.961.572.093.0137.0160.0
M142.057.584.498.8148.0218.0255.0
M162.078.8115.7135.4230.0338.0395.0
M182.599.0141.0165.0329.0469.0549.0
M202.5127.0181.0212.0464.0661.0773.0
M222.5158.0225.0264.0634.0904.01057.0
M243.0183.0260.0305.0798.01136.01329.0
M273.0240.0342.0400.01176.01674.01959.0
M303.5292.0416.0487.01597.02274.02662.0
M333.5363.0517.0605.02161.03078.03601.0
M364.0427.0608.0711.02778.03957.04631.0
M394.0512.0729.0853.03597.05123.05994.0
M424.5584.0832.0974.04413.06285.07354.0
M454.5684.0974.01140.05512.07851.09187.0
M485.0770.01096.01283.06667.09495.011112.0
M525.0922.01314.01537.08570.012206.014284.0
M565.51064.01516.01774.010678.015208.017797.0
M605.51242.01770.02071.013249.018870.022082.0
M646.01406.02003.02344.015955.022724.026592.0
M686.01610.02293.02683.019282.027462.032137.0
M726.01828.02603.03046.023043.032819.038405.0
M766.02059.02933.03432.027232.038785.045387.0
M806.02304.03282.03840.031930.045476.053216.0
M906.02977.04240.04962.046188.065783.076980.0
M1006.03736.05322.06227.064297.091574.0107161.0

Резьба метрическая с мелким шагом

Уровень нагрузок соответствует 90% от минимального предела текучести

Коэффициент трения — 0,14

РезьбаОсевая нагрузка, кНМомент затяжки, Нм
Класс прочности
Мшаг8.810.912.98.810.912.9
M81.019.728.933.929.242.850.1
M101.2530.845.252.957.083.098.0
M121.2546.868.780.4101.0149.0174.0
M121.544.365.176.297.0143.0167.0
M141.563.292.9109.0159.0234.0274.0
M161.585.5126.0147.0244.0359.0420.0
M181.5115.0163.0191.0368.0523.0613.0
M201.5144.0206.0241.0511.0728.0852.0
M221.5178.0253.0296.0692.0985.01153.0
M242.0204.0290.0339.0865.01232.01442.0
M272.0264.0375.0439.01262.01797.02103.0
M302.0331.0472.0552.01756.02502.02927.0
M332.0407.0580.0678.02352.03350.03921.0
M362.0490.0698.0817.03082.04390.05137.0
M392.0581.0828.0969.03953.05631.06589.0

Один из распространенных способов защиты резьбового соединения от самоотвинчивания под воздействием вибрации или вследствие появления остаточных деформаций металла основан на использовании болтов и гаек с насечками или зубцами. В этом случае при сборке изделия необходимо добиться врезания зубьев под головкой болта в соединяемый материал. Так как увеличенное трения из-за наличия зубцов будет оказывать влияние на момент затяжки, то для таких болтов и гаек необходимо руководствоваться таблицами 3, 4 и 5.

Болты с шестигранной головкой и фланцем с насечками арт. 88913

Гайки с фланцем и насечками арт. 88914

Класс прочности 100/10

РезьбаОсевая нагрузка, кНМомент затяжки, Нм
Соединяемый материал
МшагСталь < 800 МПаСталь ≥ 800 МПаКовкий чугун
M50.8900011109
M61.012600191816
M81.2523200423735
M101.537000858075
M121.7554000130120115
M141.574000250240230
M162.0102000330310300

Винты с внутренним шестигранником и насечками арт. 88912

Класс прочности 100/10

РезьбаОсевая нагрузка, кНМомент затяжки, Нм
Соединяемый материал
МшагСталь < 800 МПаСталь ≥ 800 МПаКовкий чугун
M50.89000131110
M61.012600242019
M81.2523200454239
M101.537000908580
M121.7554000150140120

Болты с шестигранной головкой и зубцами арт. 88933

Класс прочности 100/10

РезьбаОсевая нагрузка, кНМомент затяжки, Нм
Соединяемый материал
МшагСтальКовкий чугун
M50.8635097
M61.090001613
M81.25165003428
M101.5262005849
M121.7554000120105
M162.0102000280260

Коэффициент трения для болтовых соединений из коррозионностойких аустенитных сталей А2 и А4 гораздо больше, чем для стального крепежа, при этом нержавеющие болты и гайки склонны к заеданию в резьбе при больших осевых усилиях, подробнее об этом написано здесь. В таблице 6 представлены предельные моменты затяжки для болтов и гаек из нержавеющей стали с различными классами прочности.

Резьба метрическая с крупным шагом

Уровень нагрузок соответствует 90% от минимального предела текучести

Затяжка резьбовых соединений

Уровень качества крепежных элементов, технические характеристики используемого инструментария, а также корректный подход к выбору способа затягивания резьбового соединения – совокупность данных факторов играет главную роль в обеспечении высоких рабочих показателей объектов сферы стройиндустрии, узлов механизмов и машин. Продолжительный временной интервал сохранения усилия затяжки является гарантией надежности разъемного сопряжения, сформированного за счет резьбы, в ходе его эксплуатации.

Силовые характеристики резьбовых соединений

В число основных силовых характеристик резьбовых соединений входят:

величина минимальной разрушающей нагрузки;

численное значение пробной нагрузки. Для болта с прочностью класса не ниже 6.8 она берется равной примерно 75-79 процентов от вышеуказанного разрушающего воздействия. Пробная нагрузка служит в качестве контрольного показателя, который крепежный элемент должен выдержать в ходе испытаний.

Момент силы предварительной затяжки (обозначение МСПЗ) резьбового сопряжения обычно находится в диапазоне 75%≤МСПЗ≤80% от величины пробной нагрузки. В некоторых случаях МСПЗ принимается равным 90% от численного значения этой же характеристики. Приложенное усилие затяжки способствует проявлению в упруго напряженных компонентах крепежа механизма пластических деформаций. Его действие вызывает убывание напряжений. Данный фактор приводит к снижению затяжки соединения без дополнительных воздействий силового характера.

Zatyazhka rezbovyh soedinenij.jpg

Конструкторская документация (сокращенно КД) содержит сведения о величине вращающего момента затяжки, либо соответствующего значения усилия предварительной затяжки.

К повреждению в резьбовых соединениях приводят, в основном, нижеперечисленные факторы.

с неравномерно распределяемым усилием;

с усилием, превышающим указанное в КД либо, наоборот, недостаточным.

Были некорректно подобраны компоненты, формирующие соединение.

Основные способы затягивания резьбовых соединений

На территории нашей страны действует Руководящий Документ за номером 37.001.131, принятый в 1989 году. В нем прописаны нормы затяжки соединений, созданных с использованием резьбовой накатки с диаметром (обозначение d), изменяющемся в диапазоне M6≤d≤M24, а также выдвигаемые к ним технические требования. Кроме того, его положения устанавливают значения минимальных и максимальных крутящих моментов затяжки таких сопряжений с учетом размерных характеристик крепежа, его класса прочности в соответствии с регламентом ГОСТа1759-70 и принадлежности соединения к определенному классу.

Приложение крутящего момента

Данный способ затяжки получил наибольшее распространение ввиду простоты, незначительным затратам времени на реализацию и невысокой стоимости используемого инструментария. Его суть – формирование на крепежной детали (неважно, будь то гайка, болт либо винт) крутящего момента, благодаря которому обеспечивается требуемая сила предварительной затяжки. Для конкретики рассмотрим этот вопрос касательно метиза первого вида.

Крутящим моментом называется момент силы, которая приложена к гайке на определенной удаленности от центра, вызывающий ее поворот вокруг вертикальной оси. Рассчитывается этот параметр по следующей формуле:

М силы – Момент силы;

F – приложенная сила;

Болт, как один из элементов резьбового соединения, находясь под постоянным напряжением механического характера, проявляет устойчивость к усталости. При очень небольшом первоначальном усилии этот метиз под воздействием внешних изменяющихся нагрузок станет быстро повреждаться. Когда же первоначальное усилие чересчур велико, не исключено разрушение данной крепежной детали. Исходя из вышесказанного, можно сделать следующий вывод: надежность соединения – характеристика производная от корректности выбора первоначального усилия. Таким образом, необходимо контролировать приложенный к гайке крутящий момент.

1.PNG
Крутящий момент является косвенной характеристикой величины усилия затяжки. Если соединение сконструировано корректно и при условии, что проводился контроль этого показателя, рассмотренный способ для большинства возможных случаев является удовлетворительным. В резьбовых соединениях, относящихся к категории ответственных, требуется применение прямых и намного более точных методик определения затягивающего усилия, способствующих уменьшению отклонения остаточного значения этого параметра от указанного в КД. В основе этих способов находятся:

измерение величины, на которую растянулся стержень крепежной детали;

контроль угла поворота накручиваемой гайки;

прямой контроль усилия затягивания.

Техническая документация содержит сведения о требуемой величине затягивающего усилия. Однако все не так просто. Соединение может подвергаться нескольким циклам сборки/разборки и эксплуатироваться большой промежуток времени. В результате проявятся неучтенные изменения, оказывающие влияние на его характеристики.

Необходимый момент затяжки определяется:

геометрией и качеством резьбовой накатки, классом прочности стержневого крепежа;

коэффициентом трения между поверхностью соединяемого элемента конструкции и опорной поверхностью навинчиваемой гайки;

коэффициентом трения между стержнем шпильки/болта и гайкой.

Наиболее значимы в этом плане пункты №2 и №3. При усадке металла, грубо обработанной поверхности и трении, которое можно назвать практически сухим, потери именно от трения могут достичь такого высокого уровня, что при затягивании непосредственно на долю напряжения соединения останется не больше 10 процентов момента. Большая часть – 90 процентов – уходит на преодоление силы трения, а также усадку.

Данный фактор может негативно повлиять на надежность соединения. Исполнитель будет считать, что оно уже полностью затянуто, хоть в действительности это не так. Система, реализованная в гайковерте, покажет необходимый момент, но усилие затяжки требуемого уровня достигнуто еще не будет. В ходе эксплуатации резьбовое соединение подвергается воздействию внешних нагрузок, в том числе вибрационного характера, вызывающих его ослабление. Такой ход развития событий может привести к аварии.

Снижение коэффициента трения возможно путем использования машинного масла. Но излишне смазывать им контактирующие поверхности нельзя, поскольку усилие затяжки может быть превышено, в результате чего не исключено разрушение стержневого крепежа.

Величина крутящего момента при отвинчивании гаек превышает значение этого показателя, фиксируемого при их затяжке примерно в полтора раза. Объясняется данное явление:

проникновением – по-научному диффузией – металла элементов болтокомплекта одного в другой;

воздействием коррозии на резьбовое соединение.

Когда откручиваются проржавевшие и окрашенные соединения, может потребоваться инструмент, способный продуцировать момент, величина которого в 2 раза превышает значение этого параметра, указанное в КД. Здесь целесообразно применять спецсредства, обеспечивающие разрушение продуктов коррозии. Так будет уменьшено трение и снижен уровень сил, воздействующих на инструментарий, что продлит его рабочий ресурс.

Но встречаются ситуации, которые в этом плане принято называть безнадежными. Выход видится в использовании специального устройства, с помощью которого можно удалить гайку. Оно так и называется – гидравлический гайкорез.

Gaykorez.jpg

Что же касается гайковерта, то подбирать его следует с запасом по параметру «крутящий момент» не меньше 30 процентов.

Осевая вытяжка

В данном методе объектом приложения усилия является стержневой крепеж – болт, винт либо шпилька. Это его принципиальное отличие от вышеописанного способа. Осевая вытяжка предполагает выполнение следующей последовательности действий:

предварительное растяжение стержневой соединительной детали. Величина прикладываемого при этом усилия должна быть равной требуемому усилию затягивания;

навинчивание гайки без применения какого-либо инструмента – просто от руки – пока она не войдет в контакт с опорной поверхностью;

сброс гидравлического давления. С болта таким образом снимается нагрузка. В результате усилие затяжки достигает заданной величины.

Требование такое: стержень крепежа должен выступать над торцом гайки не меньше чем на 0,8×Д, где Д – диаметр стержня. Основное достоинство осевой вытяжки – отсутствие потерь на преодоление силы трения в резьбовой накатке и между сопрягаемыми поверхностями. В цифрах картина выглядит так:

потери на деформацию имеющихся на резьбовых витках и поверхностях скрепляемых объектах микронеровностей составляют примерно 30 процентов;

на выполнение полезной работы, связанной с затяжкой резьбового соединения, приходится 70 процентов.

Здесь используются два способа, предусматривающие использование различных приспособлений. Рассмотрим их несколько подробнее.

Вытяжка тензорными домкратами

Этому методу присущи следующие преимущества:

сложные соединения затягиваются синхронно;

усилие затяжки прикладывается равномерно; характеризуется высокой точностью.

Посредством тензорных домкратов, в конструкцию которых входят 2 порта, оснащенные быстроразъемными соединениями, можно затягивать крепеж синхронно и сформировать систему этих устройств с подводом рабочей среды от единой насосной станции. Чтобы получить повышенную точность, профессионалы рекомендуют прикладывать силу к болту, а гайку навинчивать два раза.

Первое нагружение обеспечивает компенсацию зазоров, деформацию поверхностных микронеровностей, а также равномерность распределения нагрузки. Цель проведения второго нагружения – достижение требуемой точности финишного усилия затягивания соединения.

Vytyazhka tenzornymi domkratami.jpg

Возвращаясь к разговору, касающемуся синхронной затяжки, несколько слов о перекрестной методике ее выполнения. Она предусматривает одновременное затягивание всех либо нескольких болтов, формирующих соединение, исходя из количества имеющихся в распоряжении тензорных домкратов. Применяется этот способ, если необходимо затянуть стержневой крепеж теплообменников, герметичных аппаратов, именуемых автоклавами, фланцев трубопроводных систем и иного оборудования, работающего под давлением выше атмосферного.

Вытяжка гидравлическими гайками

Гидрогайки применяют, когда работа выполняется в условиях ограниченного пространства, и затягивающий инструмент не помещается в рабочую область. Также останавливать свой выбор на крепеже данного вида следует, когда собранное ответственное соединение будет подвергаться:

циклическому напряжению давлением либо температурой.

Гидравлические гайки отличаются отсутствием при затягивании крутящего момента. Данный фактор позволяет исключить:

повреждение материала уплотнений;

Ниже представлена последовательность вытяжки шпильки гидрогайкой.

Этап №1. Гидрогайка навинчивается на соответствующий сегмент шпильки или стержня болта, формирующих разъемное соединение.

Этап №2. В гидрогайку подается рабочая жидкость под давлением. Поршень метиза приводится в движение и стержневой крепеж испытывает нагрузку, работающую на растяжение.

Этап №3. Закручивается зажимное кольцо, фиксирующее гидрогайку. давление сбрасывается. Затяжка разъемного соединения завершена. Гидрогайка остается на резьбовой накатке.

Контроль степени затяжки разъемного соединения

В общем случае для проведения регулируемой затяжки резьбовых крепежных деталей используется динамометрический инструмент. Такой подход имеет следующие основные преимущества:

на соединительные элементы воздействует нагрузка заданной величины. Поэтому вероятность повреждения резьбы метиза и сопрягаемого объекта минимальна;

равномерное распределение нагрузки в ходе вкручивания. За счет этого надежность создаваемой конструкции возрастает;

соединение, сформированное с применением динамометрического инструмента, практически никогда не выводится в категорию брака;

экономия времени. На закручивание крепежа с помощью гаечного/рожкового ключа уходит больший временной интервал. Ведь обычно этот инструмент нужно переставлять под удобный захват рукой.

Наиболее популярен трещоточный динамометрический ключ. Величину предельного усилия закручивания нужно установить до проведения этой операции. При достижении данным параметром требуемого значения, ключ щелкнет. В ниже расположенной таблице отображены предельно допустимые значения момента затяжки для болтов различного класса прочности.

Момент затяжки болтов

При проектировании, сборке и монтаже узлов, очень важно учитывать момент затяжки болтов. Момент затяжки болта контролируется динамометрическим ключом, а назначается исходя из определённых условий.

Требуемое осевое усилие болта

По сути, момент затяжки болта создает силу прижатия поверхностей. Усилие очень важно, так как соединения бывают разные, в некоторых случаях важно прижать поверхности, например при контакте метал-метал, а в некоторых излишнее усилие может навредить соединению, например установка крышки через резиновую прокладку, или установка пластиковой детали на металлический каркас.

Сначала конструктор определяет необходимое усилие прижатия поверхностей, затем определяет диаметр болтов или их количество. О том, как определить диаметр и количество, я рассказывал в уроке «Расчет болтов». Затем назначается момент затяжки. Тут есть маленькая хитрость: Когда требуется небольшое усилие (прокладка или пластик), лучше назначить чуть больше болтов меньшего диаметра, что позволит их расположить с меньшим шагом и более равномерно прижать поверхности. И, чем ближе момент затяжки болта к рекомендуемому значению, тем меньше шансов, что произойдет самопроизвольное откручивание.

Прочность болта

Рекомендуемые значения затяжки болтов назначаются из условия прочности болтов. В уроке «Прочность болтов» я рассказывал про прочность, какие бывают болты и как маркируются. Обычно рекомендуемый момент затяжки обеспечивает осевое усилие болта в 2/3 от предела текучести, то есть затянутый болт будет иметь запас прочности.

Ниже представлена таблица для затяжки болтов и гаек со стандартным шагом метрической резьбы.

Момент затяжки болтов

Как видим из таблицы, момент затяжки любого болта прочностью 12.9 в разы выше момента затяжки болта класса прочности 4.6. Обращаю Ваше внимание, что данные моменты затяжек действуют только для болтов и гаек из углеродистых сталей со стандартным шагом. Ни в коем случае нельзя затягивать с такими значениями в алюминиевый или чугунный корпус. Данная таблица также не распространяется на самоконтрящиеся гайки и на элементы с мелким шагом резьбы.

Контроль момента затяжки болтов

Как я писал выше, требуемый момент затяжки обеспечивается динамометрическим ключом или иным настраиваемым инструментом (пневматический или электрический гайковерт). При затяжке обращаем внимание на качество резьбы, следим, чтобы гайка или болт закручивались от усилия пальцев и без закусывания.

Иногда, при осуществлении контролируемой затяжки, смазывают резьбу и поверхность под головкой болта или гайки. Раскрутить соединение обычно сложнее, может понадобиться значительно больший момент. Связано это с деформациями, окислением между болтом и поверхностью, коррозией в резьбе. Если требуется проверить, с нужным моментом затянут болт или нет, достаточно просто настроить ключ и попробовать подтянуть болт.

В соединениях с несколькими болтами, контролируемая затяжка осуществляется в несколько приёмов, о том, как это сделать, я расскажу в уроке «Порядок затяжки болтов».

Прочитав данный урок, Вы знаете, с каким усилием можно тянуть болты в обычных соединениях. Помимо простых соединений, меня часто спрашивают какой момент затяжки болтов ГБЦ (головки блока цилиндров) и некоторых других ответственных узлов. Этому вопросу будет посвящен отдельный урок.

В одной из следующих статей мы более подробно обсудим момент затяжки гаек на конкретных примерах, а на сегодня все, спасибо за внимание.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector