Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Единица измерения магнитной индукции

Единица измерения магнитной индукции

Тесла — единица измерения магнитной индукции в системе СИ

Единица магнитной индукции ($overline$) в международной системе единиц (СИ) называется тесла (Тл), по имени сербского ученого Н. Тесла, который успешно работал в области радиотехники и электроники.

Единицу измерения магнитной индукции определим исходя из закона Ампера. Рассмотрим прямолинейный проводник, длиной $l$ по которому течет ток $I$. Пусть этот проводник находится в однородном магнитном поле $overline$, причем вектор индукции поля перпендикулярен проводнику. В таком случае модуль силы Ампера ($>_A$), воздействующей на проводник равен:

Выразим магнитную индукцию из формулы (1), получим:

Из выражения (2) мы видим, что тесла (единица измерения магнитной индукции) — это величина, соответствующая магнитной индукции однородного магнитного поля, действующего на каждый метр прямого проводника, находящегося в магнитном поле перпендикулярно направлению $overline$, с силой в один ньютон, при силе тока в проводнике в один ампер:

Единица измерения магнитной индукции (тесла) является производной в системе Международных единиц (СИ). Через основные единицы СИ Тл, как единицу измерения магнитной индукции выражают, учитывая, что:

Стандартные приставки системы СИ можно использовать с Тл при обозначении десятичных кратных и дольных единиц. Например, $кТл$ (кило тесла), $1кТл=1000Тл$; нТл (нано тесла), $1нТл=<10>^<-9>Тл.$

1 Тл — достаточно большая величина магнитной индукции, особенно, если речь идет о постоянном магнитном поле. Человек на сегодняшний день смог создать постоянное магнитное поле величиной 100,75 Тл. Искусственно созданное людьми импульсное магнитное поле достигло величины индукции в $2,8cdot <10>^3Тл$. Магнитное поле Земли может существенно отличаться в зависимости от местоположения на планете, оно составляет порядка $approx $10 мкТл.

Гаусс — единица измерения магнитной индукции в системе единиц СГС

В системе единиц СГС (сантиметр, грамм, секунда) единицей измерения магнитной индукций служит гаусс (Гс). Соотношение между гауссом и тесла:

Данная единица измерения именована в честь немецкого ученого К.Ф. Гаусса.

Используя основные единицы системы СГС, единица измерения магнитной индукции выражается как:

Примеры задач с решением

Задание. Получите единицу измерения магнитной индукции в Международной системе единиц, используя формулу, связывающую ее с магнитным потоком ($Ф$).

Решение. По условию задачи в качестве основы для ее решения используем выражение:

где$ Ф$- поток вектора магнитной индукции через площадку S;$ S$ — величина площади площадки; $alpha $ — угол между направлением нормали к площади S и направлением вектора магнитной индукции. Выразим модуль вектора магнитной индукции из формулы (1.1), имеем:

Учитывая, что в системе СИ $$ — величина безразмерная, поток вектора магнитной индукции измеряется в веберах (Вб):

а единицы измерения площади:

Ответ. Мы получили, что тесла — единица измерения магнитной индукции, и ее можно выразить как: $Тл=frac<Вб><м^2>$

Задание. Определите размерность индукции магнитного поля, используя формулу для модуля $overline$ кругового витка с током.

Решение. Найдем величину вектора магнитной индукции в центре кругового вика с током (рис.1).

Единица измерения магнитной индукции, пример 1

Получим формулу для вычисления модуля вектора магнитной индукции в центре витка с током $I$, будем считать, что радиус витка равен R, виток находится в вакууме. Выделим элементарный участок кругового тока ($dl$) (см. рис.1). Величина индукции в очке О от избранного элемента $dl$ равна (из закона Био-Савара — Лапласа):

Для нашего случая все элементы $dl$ перпендикулярны соответствующим радиус-векторам, соединяющим их с точкой, где мы ищем поле, значит $=1.$ Кроме того для всех участков витка $r=R.$ Выражение (2.1) преобразуется к виду:

Все элементы кругового тока будут образовывать вектор, направленный по оси X (рис.1). Для нахождения полного поля перейдем к интегралу:

Рассмотрим единицы измерения правой части выражения (2.3), имеем:

Читайте так же:
Давление газа в пропановом баллоне 50 л

Ответ. Мы получили, что тесла можно выразить как: $Тл=frac<Н><Аcdot м>$

Катушки индуктивности и магнитные поля. Часть 2. Электромагнитная индукция и индуктивность

Электромагнитная индукция и индуктивностьЭлектрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное – Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

На изучение этого очевидного сейчас закона физики после открытия Эрстеда ушло целых двадцать два года. Получением электричества из магнитного поля занимался английский ученый Майкл Фарадей. Делались различной формы и размеров проводники и магниты, искались варианты их взаимного расположения. И только, видимо, случайно ученый обнаружил, что для получения на концах проводника ЭДС необходимо еще одно слагаемое – движение магнита, т.е. магнитное поле должно быть обязательно переменным.

Сейчас это никого уже не удивляет. Именно так работают все электрические генераторы, — пока его чем-то вращают, электроэнергия вырабатывается, лампочка светит. Остановили, перестали вращать, и лампочка погасла.

Электромагнитная индукция

Таким образом, ЭДС на концах проводника возникает лишь в том случае, если его определенным образом перемещать в магнитном поле. Или, точнее говоря, магнитное поле обязательно должно изменяться, быть переменным. Это явление получило название электромагнитной индукции, по-русски электромагнитное наведение: в этом случае говорят, что в проводнике наводится ЭДС. Если к такому источнику ЭДС подключить нагрузку, то в цепи будет протекать ток.

Величина наведенной ЭДС зависит от нескольких факторов: длины проводника, индукции магнитного поля B, и в немалой степени от скорости перемещения проводника в магнитном поле. Чем быстрее вращать ротор генератора, тем напряжение на его выходе выше.

Замечание: электромагнитную индукцию (явление возникновение ЭДС на концах проводника в переменном магнитном поле) не следует путать с магнитной индукцией – векторной физической величиной характеризующей собственно магнитное поле.

Три способа получения ЭДС

Индукция

Этот способ был рассмотрен в первой части статьи. Достаточно перемещать проводник в магнитном поле постоянного магнита, или наоборот перемещать (практически всегда вращением) магнит около проводника. Оба варианта однозначно позволят получить переменное магнитное поле. В этом случае способ получения ЭДС называется индукцией. Именно индукция используется для получения ЭДС в различных генераторах. В опытах Фарадея в 1831 году магнит поступательно перемещался внутри катушки провода.

Взаимоиндукция

Это название говорит о том, что в этом явлении принимают участие два проводника. В одном из них протекает изменяющийся ток, который создает вокруг него переменное магнитное поле. Если рядом находится еще один проводник, то на его концах возникает переменная же ЭДС.

Такой способ получения ЭДС называется взаимоиндукцией. Именно по принципу взаимоиндукции работают все трансформаторы, только проводники у них выполнены в виде катушек, а для усиления магнитной индукции применяются сердечники из ферромагнитных материалов.

Если ток в первом проводнике прекратится (обрыв цепи), или станет пусть даже очень сильным, но постоянным (нет никаких изменений), то на концах второго проводника никакой ЭДС получить не удастся. Вот почему трансформаторы работают только на переменном токе: если к первичной обмотке подключить гальваническую батарейку, то на выходе вторичной обмотки никакого напряжения однозначно не будет.

ЭДС во вторичной обмотке наводится только при изменении магнитного поля. Причем, чем сильнее скорость изменения, именно скорость, а не абсолютная величина, тем больше будет наведенная ЭДС.

Три способа получения ЭДС

Самоиндукция

Если убрать второй проводник, то магнитное поле в первом проводнике будет пронизывать не только окружающее пространство, но и сам проводник. Таким образом, под воздействием своего поля в проводнике наводится ЭДС, которая называется ЭДС самоиндукции.

Явления самоиндукции в 1833 году изучал русский ученый Ленц. На основании этих опытов удалось выяснить интересную закономерность: ЭДС самоиндукции всегда противодействует, компенсирует внешнее переменное магнитное поле, которое вызывает эту ЭДС. Эта зависимость называется правилом Ленца (не путать с законом Джоуля — Ленца).

Знак «минус» в формуле как раз и говорит о противодействии ЭДС самоиндукции причинам ее породившим. Если катушку подключить к источнику постоянного тока, ток будет возрастать достаточно медленно. Это очень заметно при «прозвонке» первичной обмотки трансформатора стрелочным омметром: скорость движения стрелки в сторону нулевого деления шкалы заметно меньше, чем при проверке резисторов.

При отключении катушки от источника тока ЭДС самоиндукции вызывает искрение контактов реле. В случае, когда катушка управляется транзистором, например катушка реле, то параллельно ей ставится диод в обратном направлении по отношению к источнику питания. Это делается для того, чтобы защитить полупроводниковые элементы от воздействия ЭДС самоиндукции, которая может в десятки и даже сотни раз превышать напряжение источника питания.

Для проведения опытов Ленц сконструировал интересный прибор. На концах алюминиевого коромысла закреплены два алюминиевых же кольца. Одно кольцо сплошное, а в другом был сделан пропил. Коромысло свободно вращалось на иголке.

cамоиндукция

При введении постоянного магнита в сплошное кольцо оно «убегало» от магнита, а при выведении магнита стремилось за ним. Те же самые действия с разрезанным кольцом никаких движений не вызывали. Это объясняется тем, что в сплошном кольце под воздействием переменного магнитного поля возникает ток, который создает магнитное поле. А в разомкнутом кольце тока нет, следовательно, нет и магнитного поля.

Немаловажная деталь этого опыта в том, что если магнит будет введен в кольцо и останется неподвижным, то никакой реакции алюминиевого кольца на присутствие магнита не наблюдается. Это лишний раз подтверждает, что ЭДС индукции возникает только в случае изменения магнитного поля, причем величина ЭДС зависит от скорости изменения. В данном случае просто от скорости перемещения магнита.

То же можно сказать и о взаимоиндукции и самоиндукции, только изменение напряженности магнитного поля, точнее скорость его изменения зависит от скорости изменения тока. Для иллюстрации этого явления можно привести такой пример.

Пусть через две достаточно большие одинаковые катушки проходят большие токи: через первую катушку 10А, а через вторую целых 1000, причем в обеих катушках токи линейно возрастают. Предположим, что за одну секунду ток в первой катушке изменился с 10 до 15А, а во второй с 1000 до 1001А, что вызвало появление ЭДС самоиндукции в обеих катушках.

Но, несмотря на такое огромное значение тока во второй катушке, ЭДС самоиндукции будет больше в первой, поскольку там скорость изменения тока 5А/сек, а во второй всего 1А/сек. Ведь ЭДС самоиндукции зависит от скорости возрастания тока (читай магнитного поля), а не от его абсолютной величины.

Индуктивность

Магнитные свойства катушки с током зависят от количества витков, геометрических размеров. Значительного усиления магнитного поля можно добиться введением в катушку ферромагнитного сердечника. О магнитных свойствах катушки с достаточной точностью можно судить по величине ЭДС индукции, взаимоиндукции или самоиндукции. Все эти явления были рассмотрены выше.

Характеристика катушки, которая рассказывает об этом, называется коэффициентом индуктивности (самоиндукции) или просто индуктивностью. В формулах индуктивность обозначается буквой L, а на схемах этой же буквой обозначаются катушки индуктивности.

Единица измерения индуктивности – генри (Гн). Индуктивностью 1Гн обладает катушка, в которой при изменении тока на 1А в секунду вырабатывается ЭДС 1В. Это величина достаточно большая: индуктивностью в один и более Гн обладают сетевые обмотки достаточно мощных трансформаторов.

Поэтому достаточно часто пользуются величинами меньшего порядка, а именно милли и микро генри (мГн и мкГн). Такие катушки применяются в электронных схемах. Одно из применений катушек – колебательные контура в радиоустройствах.

Также катушки используются в качестве дросселей, основное назначение которых пропустить без потерь постоянный ток при этом ослабив переменный (фильтры в источниках питания). Как правило, чем выше рабочая частота, тем меньшей индуктивности требуются катушки.

Индуктивное сопротивление

Если взять достаточно мощный сетевой трансформатор и померить мультиметром сопротивление первичной обмотки, то окажется, что оно всего несколько Ом, и даже близко к нулю. Выходит, что ток через такую обмотку будет очень большим, и даже стремиться к бесконечности. Кажется, короткое замыкание просто неизбежно! Так почему же его нет?

Одним из основных свойств катушек индуктивности является индуктивное сопротивление, которое зависит от индуктивности и от частоты переменного тока, который подведен к катушке.

Нетрудно видеть, что с увеличением частоты и индуктивности индуктивное сопротивление увеличивается, а на постоянном токе вообще становится равным нулю. Поэтому при измерении сопротивления катушек мультиметром измеряется только активное сопротивление провода.

Конструкция катушек индуктивности весьма разнообразна и зависит от частот, на которых работает катушка. Например, для работы в дециметровом диапазоне радиоволн достаточно часто используются катушки, выполненные печатным монтажом. При массовом производстве такой способ очень удобен.

Индуктивность катушки зависит от ее геометрических размеров, сердечника, количества слоев и формы. В настоящее время выпускается достаточное количество стандартных катушек индуктивности похожих на обычные резисторы с выводами. Маркировка таких катушек выполняется цветными кольцами. Также существуют катушки для поверхностного монтажа, применяемые в качестве дросселей. Индуктивность таких катушек составляет несколько миллигенри.

В чем заключается явление электромагнитной индукции

В различных электротехнических устройствах, например, в электрических машинах, используется явление, которое носит название электромагнитная индукция (ЭМИ). В чём же оно заключается?

Открытие

М. Фарадей также увлекался химическими экспериментами

ЭМИ была открыта в 1831 году англичанином М. Фарадеем.

В чем же заключается явление электромагнитной индукции? Смысл открытия состоял в обнаружении появления тока в проводнике при пересечении им магнитного поля (МП). Опыт Фарадея включал создание меняющегося МП в катушке с намотанным на ней проводом. В расположенной рядом с первой второй катушке появилась ЭДС, которая фиксировалась вольтметром.

Закон ЭМИ

Физик открыл, что возникающая в проводнике ЭДС пропорциональна скорости изменения МП, проходящего через проводник. Оказалось, что причина изменения потока не имеет значения. Он может изменяться при движении проводника в МП или при воздействии переменного МП на неподвижный проводник.

Проведя несколько опытой, учёный вывел закон электромагнитной индукции

Математически закон Фарадея имеет следующий вид:

е= -∆Ф/∆t,

  • е· – ЭДС;
  • Ф — МП;
  • t –время.

Знак минус соответствует правилу Ленца, по которому возникающий в результате индукции ток противодействует изменению основного МП.

Использование явления

На применении закона ЭМИ создано большое количество различных устройств и приборов. Наиболее распространенными и важными для промышленности являются электродвигатели, электрогенераторы, трансформаторы.

В статоре электродвигателя переменного тока, например, создается переменное магнитное поле, которое генерирует ток в роторе.

При взаимодействии МП статора и ротора возникает вращающий момент

В трансформаторе переменный ток создает изменяющееся МП, которое пронизывает вторичную обмотку. В результате этого во вторичной обмотке генерируется ЭДС. Изменяя соотношение числа витков обмоток можно получить повышающий или понижающий напряжение трансформатор.

Явление ЭМИ используется также в индукционных печах, различных электромагнитных датчиках. На основе этого явления создан магнитный газовый генератор, в котором в качестве замкнутой рамки используется токопроводящий газ.

ЭМИ, связанная с воздействием изменяющегося магнитного поля на проводник, была открыта Фарадеем еще в девятнадцатом веке. На использовании этого явления построены различные электротехнические устройства и приборы, которые широко применяются в современном мире.

Электромагнитная индукция. Правило Ленца

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Формула магнитного потока

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф , площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер ( В б ) . Магнитный поток, равный 1 В б , может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л , которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д . Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Закон Фарадея:

δ и н д = — ∆ Φ ∆ t

Правило Ленца

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Рисунок 1 . 20 . 2 . Правило Ленца

Здесь ∆ Φ ∆ t > 0 , а δ и н д < 0 < 0. Индукционный ток I и н д протекает навстречу выбранному положительному направлению l → обхода контура.

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х . Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = — F υ ∆ t = — I B l υ ∆ t = — υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector