Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт компьютерного блока питания. Окончание

Ремонт компьютерного блока питания. Окончание

Радиатор с никозвольтными диодами

Эти элементы установлены на отдельном радиаторе.

Напомним, что в блоке питания имеется, как минимум, два отдельных радиатора – один для высоковольтных элементов, другой – для низковольтных.

Если в блоке имеется активная схема PFC, то она будет иметь свой радиатор, т.е. всего их будет три.

Силовые элементы низковольтной части – это, как правило, сдвоенные выпрямительные диоды Шоттки. Эти диоды отличаются от обычных тем, что на них падает меньшее напряжение.

Таким образом, при том же токе они рассеивают меньшую мощность и меньше греются.

Диодная сборка имеет общий катод, потому выводов у нее три, а не четыре. Как проверять диоды, написано здесь.

Пробное включение

document-propertiesПосле замены неисправных деталей необходимо произвести пробное включение блока.

При этом вместо предохранителя следует включить электрическую лампу 220 — 230 В мощностью 40 – 100 Вт. Дело в том, что неисправность силовых высоковольтных транзисторов могла быть вызвана неисправностью управляющей микросхемы-контроллера. При этом контроллер может ошибочно открыть сразу оба транзистора.

Через них потечет так называемый сквозной (очень большой) ток, и они выйдут из строя . После замены транзисторов – даже если контроллер и неисправен – почти все напряжение упадет на лампе. Ток будет ограничен, и транзисторы останутся целыми.

Итак, если после замены транзисторов лампа загорится в полный накал – неисправен контроллер или так называемая «обвязка» (дополнительные детали) вокруг него. Но это уже сложная неисправность. Чтобы устранить ее, необходимо знать – как работает контроллер, какие сигналы выдает.

Поэтому такой случай оставим профессионалам. Если же лампа мигнет на короткое время и погаснет (или будет гореть едва заметным накалом), значит, сквозного тока через транзисторы нет.

Следует отметить, что схемотехника блоков питания постоянно совершенствуется, поэтому такой способ пробного включения, вообще говоря, не всегда может быть рекомендован.

Если вы будете использовать его, то помните, что вы применяете его на свой страх и риск.

Если пробное включение прошло нормально, то можно замерить

Напряжение дежурного источника

Запуск блока питания

Напряжение дежурного источника 5VSB (обычно это провод фиолетового цвета) присутствует на выводе разъема блока питания.

Оно должно находиться в пределах 5% поля допуска, т.е. от 4,75 до 5,25 В.

Если оно находится в этих пределах, необходимо присоединить нагрузку к блоку питания и произвести запуск путем замыкания выводов PS ON и общего, обычно черного по цвету.

Контроль основных напряжений и сигнала Power Good

Разъемы питания ATX

Если блок питания запустится (при этом закрутится вентилятор), следует проконтролировать напряжения +3,3 В, + 5 В, +12 В и сигнал PG (Power Good).

Напряжение на выводе PG должно быть равным +5 В.

Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.

Сигнал Power Good служит для запуска процессора.

При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.

Это может сопровождаться потерей или искажениями данных в регистрах процессора.

Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.

Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.

Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.

Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.

Проверка элементов дежурного источника напряжения

В формировании дежурного напряжения участвуют следующие элементы:

Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.

Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.

Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.

Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.

фрагмент схемы блока питания

Иногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.

Поиск такой неисправности – сущее наказание! :negative:

Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.

Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!

Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».

Нагрузка блока питания

document-propertiesПри тестировании блоков питания к ним необходимо подключать нагрузку.

Дело в том, что питаюшие блоки снабжены в большинстве своем элементами защиты и сигнализации. Эти цепи сообщают контроллеру об отсутствии нагрузки. Он может останавливать инвертор, уменьшая выходные напряжения до нуля.

В дешевых моделях эти цепи могут быть упрощены или вообще отсутствовать, и поэтому не исключена поломка блока питания.

Нагрузка блока питания

При запуске блока питания достаточно подключить нагрузку в виде проволочных сопротивлений ПЭВ-25 6 -10 Ом (к шине +12 В) и 2 — 3 Ом (к шине +5 В).

Правда, могут быть случаи, когда с такой нагрузкой питающий блок запускается, а с реальной нагрузкой – нет.

Но такое бывает редко, и это, опять же, сложный случай. Если уж по-честному, то нагружать надо сильнее, в том числе и шину +3,3 В.

После ремонта надо обязательно проконтролировать напряжения +3,3 В, +5 В, +12 В. Они должны быть в пределах допуска — плюс-минус 5% . С другой стороны, + 12 В + 5% — это 12,6 В, что многовато…

Это напряжение подается на двигатели приводов, в том числе и на шпиндель винчестера, который и так греется достаточно сильно. Если есть регулировка, лучше снизить напряжение до +12 В. Впрочем, в недорогих моделях регулировки обычно нет.

Несколько слов о надежности блоков питания

Отсутствующий входной фильтр

Многие дешевые модели блоков питания уж слишком сильно «облегчены», что можно ощутить буквально – по весу.

Производители экономят каждую копейку (каждый юань) и не устанавливают некоторые детали на платах.

В частности, не ставят входной LC-фильтр, дроссели фильтра в каналах выходных напряжений, закорачивая их перемычками.

Если нет входного фильтра, импульсная помеха от инвертора блока питания поступает в питающую сеть и «загрязняет» и без того не очень «чистое» напряжение. Кроме того, увеличиваются скачки тока через высоковольтные элементы, что сокращает срок их службы.

Читайте так же:
Как правильно регулировать газовый редуктор

отсутствующий дросеель

В заключение скажем, что если нет дросселей фильтра в каналах выходных напряжений, уровень высокочастотных помех возрастает.

В результате импульсный стабилизатор на материнской плате, вырабатывающий напряжение питания для процессора, работает в более тяжелом режиме и сильнее нагревается.

Отсюда рекомендация – либо заменить такой блок, либо установить недостающие элементы входного и выходных фильтров.

В последнем случае хорошо бы заменить низковольтные выпрямительные диоды более мощными (потому что, скорее всего, сэкономили и на этом). Например, вместо диодных сборок 2040 с током 20 А, установить сборки 3040 с током 30 А.

document-properties«Кормите» компьютер качественным напряжением, и он будет служить Вам долгие годы! На компьютерном «желудке» (как и на своем) лучше не экономить.

Импульсный стабилизатор напряжения

Довольно часто возникают ситуации, когда характеристики электрического тока в сети не позволяют нормально эксплуатировать различные приборы и оборудование. Для решения этой проблемы используется импульсный стабилизатор тока, конструктивно напоминающий стабилизирующее устройство напряжения, работающего на основе импульсного преобразователя. Основной функцией импульсного стабилизатора является контроль над состоянием тока через нагрузку. В случае снижения тока в нагрузке подкачивается дополнительная мощность, а при повышении тока – мощность понижается.

Разновидности

По соотношению входного и выходного напряжения

  • Понижающие
  • Повышающие
  • С произвольным изменением напряжения
  • Инвертирующие

По типу ключевого элемента Интегрирующим элементом может быть В зависимости от режима работы могут быть стабилизаторы

  • на основе широтно-импульсной модуляции
  • двухпозиционные (или релейные)

Устройство импульсного стабилизатора

Схемы импульсных преобразователей, получившие наиболее широкое распространение, оборудуются реактивным элементом – дросселем, к которому энергия подкачивается определенными порциями с помощью специального ключа, еще называемого коммутатором. Подкачка осуществляется от входной цепи и далее поступает на нагрузку. В результате, такой режим работы дает существенную экономию электроэнергии, особенно, если стабилизатор работает на полевом транзисторе.

Однако, несмотря на явные преимущества, у импульсных преобразователей имеется ряд недостатков, для преодоления которых используются различные технические и конструктивные решения. В первую очередь это связано с электромагнитными и другими помехами, возникающими в процессе работы импульсного конвертера, а также сложной конструкцией устройства. Во время эксплуатации невозможно достичь максимального эффекта, поскольку происходит нагрев и энергия затрачивается впустую. Немаловажное значение имеет высокая стоимость импульсных устройств. Тем не менее, для многих схем экономия электроэнергии выступает на передний план, поэтому негативное влияние недостатков в большинстве случаев удается максимально снизить.

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку. В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3). Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Импульсный конвертер как стабилизатор тока

Многие импульсные блоки питания оборудованы системой стабилизации выходного напряжения. Подобные схемы, особенно повышенной мощности, помимо обратной связи с выходным напряжением, включают в свой состав систему контроля тока ключевого элемента.

В этом качестве может использоваться резистор с незначительным сопротивлением. Наличие такого контроля обеспечивает работу дросселя в необходимом режиме. Подобные контрольные элементы используются в простейших стабилизаторах тока, сделанных своими руками, и эффективно стабилизируют выходной ток.

Преобразователи на основе дросселя

Стабилизаторы с ёмкостным накопителем не получили широкого распространения, так как они хорошо работают только при достаточно большом внутреннем сопротивлении первичного источника. Такая ситуация возникает достаточно редко, т. к. внутреннее сопротивление источников питания стараются уменьшить, для отдачи большей мощности в нагрузку и меньших потерь энергии в источнике (например, внутреннее сопротивление бытовой сети электроснабжения в жилых помещениях составляет обычно от 0,05 Ом до 1 Ом). При работе от источника с маленьким внутренним сопротивлением в качестве накопителя энергии целесообразно использовать дроссель, либо более сложные комбинации дросселей и конденсаторов. Рассмотрим некоторые простые разновидности преобразователя.

Читайте так же:
Крепление плазмы на стену

Преобразователь с понижением напряжения

Кроме ключа S и дросселя L содержит диод D и конденсатор C. Когда ключ S замыкается, ток от источника течёт через дроссель L и нагрузку. ЭДС самоиндукции дросселя приложена обратно напряжению источника тока. В результате напряжение на нагрузке равно разности напряжения источника питания и ЭДС самоиндукции дросселя, ток через дроссель растёт, как и напряжение на конденсаторе C и нагрузке. При разомкнутом ключе S ток продолжает протекать через дроссель в том же направлении через диод D и нагрузку, а также конденсатор C. ЭДС самоиндукции приложена к нагрузке R через диод D, ток через дроссель постепенно уменьшается, как и напряжение на конденсаторе C и на нагрузке.

Преобразователь с повышением напряжения

В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S.

Возможно также совмещение этой схемы с предыдущей, что позволяет произвольно изменять величину выходного напряжения: как повышать, так и понижать. Для этого перед дросселем устанавливаются диод и ключ, как в предыдущей схеме.

Инвертирующий преобразователь

В нём дроссель подключен параллельно источнику и нагрузке. Когда ключ S замкнут, ток от источника течёт через дроссель и быстро растёт. Когда ключ размыкается, ток продолжает течь через нагрузку R и диод D. ЭДС самоиндукции дросселя приложена в обратную сторону, по сравнению с напряжением источника. Поэтому напряжение к нагрузке также приложено в обратном направлении. Когда ключ S замкнут — диод D закрывается, а нагрузка питается зарядом конденсатора C.

Во всех трёх схемах диод D может быть заменён на ключ, замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем см. синхронное выпрямление (англ.)

Гальваническая развязка

Если требуется гальваническая развязка входных и выходных цепей импульсного стабилизатора — например, по требованиям электробезопасности при использовании промышленной сети переменного тока в качестве первичного источника питания — можно применить разделительный трансформатор в рассмотренных выше основных схемах. Использование высокочастотного трансформатора в схеме преобразователя с понижением напряжения приводит к схеме однотактного или двухтактного прямоходового преобразователя (англ. forward converter). Замена дросселя в схеме инвертирующего преобразователя на дроссель с двумя или более обмотками приводит к схеме обратноходового преобразователя (англ. flyback converter).

Некоторые особенности импульсных преобразователей с гальванической развязкой входа от выхода:

Другие разновидности

Существуют другие разновидности импульсных преобразователей напряжения, использующихся в стабилизаторах. Например, такие преобразователи, как Обратноходовый преобразователь и Двухтактный преобразователь имеют индуктивную развязку выходных цепей, что позволяет питать с их помощью устройства, для которых недопустима гальваническая связь с питающей сетью.

Резонансный преобразователь имеет наилучшие условия работы ключей, что позволяет строить на его основе преобразователи большой мощности (до десятков киловатт) с достаточно высоким КПД. Однако его недостатком является сложность проектирования, что мешает его широкому распространению.

Квазирезонансный преобразователь обладает значительно более высоким КПД по сравнению с широтно-импусными модуляторами, благодаря чему обеспечивается минимальное энергопотребление в дежурном режиме и низкое тепловыделение в рабочем. Выходное напряжение БП регулируется за счет изменения частоты работы преобразователя.

Видео

Как быстро отремонтировать импульсный блок питания своими руками

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Внешний вид блока питания

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.
Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схематическое устройство импульсного блока питания

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Внешний вид основной платы блока питания

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.
Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.
Читайте так же:
320 Квт сколько ампер

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;

Внешний вид диодного моста

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Необходимый инструмент для диагностики и ремонта

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измеряем напряжение на конденсаторе

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Внешний вид предохранителей блока питания

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;

Внешний вид силового моста

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

Процесс припайки элементов к плате

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.
Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Внешний вид платы импульсного блока питания

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена элемента на плате

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Читайте так же:
Ka7812 характеристики схема подключения

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Структурная схема импульсного блока питания

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Работа схем активной коррекции фактора мощности в блоках питания

Блок питания в компьютере является одним из самых важных компонентов. От его качества в большой степени зависит надежность работы и безотказность дорогостоящих видеокарт, выполняющих вычисления при майнинге.

При подборе комплектующих для сборки майнинг рига следует обращать особое внимание на выбор качественного блока питания. Дешевое устройство может с легкостью отправить в мир иной дорогостоящее оборудование, поэтому экономия в этом случае не всегда оправдана.

К сожалению, даже качественные блоки питания (БП) иногда выходят из строя. В случае использования хорошего БП последствия для остального оборудования обычно не столь печальны, но все же ощутимы из-за вынужденных простоев и трат на приобретение нового блока.

Неотъемлемой частью всех относительно мощных импульсных блоков питания (выше 75 ватт) является схема, отвечающая за коррекцию фактора мощности. Она нужна для обеспечения полноценного отбора мощности из сети переменного тока.

Очень часто в современных компьютерных блоках питания используются APFC (Active Power Correction Circuit) — схемы коррекции, работающие в активном режиме с повышающим преобразованием. Они выполняют задачу по синхронизации фаз тока и напряжения высоковольтной части блока питания, которая возникает из-за зарядки-разрядки конденсатора, сглаживающего пульсации.

Упрощенная схема APFC с boost-преобразованием с помощью накопления энергии на катушке индуктивности:

Электронные элементы APFC работают на высоких напряжениях, подвергаются повышенной температурной и токовой нагрузке из-за чего достаточно часто выходят из строя. В связи с этим стоит разобраться с принципами их работы и возможными проблемами. В данной статье рассматриваются некоторые аспекты работы схем активной коррекции фактора мощности компьютерных импульсных блоков питания.

Читайте так же:
Как сделать матрицу из гипса

Общие сведения о схемах коррекции активной мощности

Коррекция коэффициента мощности обычно производится на входе высоковольтной части блока питания, до сглаживающего конденсатора на ее выходе. Существует множество различных топологий схем PFC с активной и пассивной коррекцией:

По ряду причин в компьютерных блоках питания обычно используются активные корректоры мощности, работающие в импульсном режиме с повышением напряжения.

Блок-схемы коррекции активной мощности (boost, dual boost bridgless и totem-pole bridgless) с контроллерами фирмы Texas Instruments:

Типовая схема boostPFC-корректора (с импульсным повышающим преобразователем) с ключом на сдвоенном полевом транзисторе:

Схемы, в которых используется повышающая катушка индуктивности с мостовым выпрямителем на входе блока питания являются одними из самых распространенных. Они имеют эффективность порядка 95-97% и состоят из относительно дешевых компонентов. Потери энергии в таких цепях зависят от 4 факторов:

  • прямое падение напряжения (Vf) на выпрямительных диодах (чем меньше величина Uобр, тем лучше);
  • потери в катушке индуктивности из-за наличия сопротивления обмотки и в сердечнике (из-за вихревых токов и перемагничивания материала);
  • потери на бустерных диодах;
  • потери на ключевых транзисторах.

Рассмотрим подробнее особенности работы классической схемы активной коррекции с импульсным повышающим преобразователем (boost-APFC).

Как работает схема активной коррекции мощности с boost-конвертером?

Чаще всего в мощных компьютерных блоках питания используется схема активной boost PFC-коррекции (с импульсным повышающим преобразователем) с накопительной катушкой индуктивности L, работа которой управляется силовым ключом S1. Ее энергия используется для постоянного заряда выходного конденсатора C импульсами, амплитуда которых меняется в соответствии с синусоидальной формой входного напряжения:

Ток в этой схеме протекает поочередно:

  • при замкнутом ключе S1 — через накопительную катушку индуктивности и разомкнутый ключ S2. При этом катушке заряжается, а питание нагрузки осуществляется от конденсатора C;
  • при размыкании ключа S1 энергия, накопленная в катушке индуктивности складывается с питающим напряжением Vin и питает нагрузку через замкнутый ключ S2. Благодаря этому напряжение на выходе схемы становиться выше, чем питающее.

На практике в качестве ключа S2 используется диод с малым сопротивлением при прямом включении:

Два состояния, в которых находится схема с импульсным повышающим преобразованием напряжения:

Изменяя время On и Off-state с помощью импульсов ШИМ, можно управлять зарядным током конденсатора, приводя его в соответствие с входным синусоидальным напряжением:

Это позволяет снизить до минимума реактивные потери и обеспечить равномерную нагрузку на сеть. Кроме того, такая схема обеспечивает стабильность напряжений на выходе блока питания даже при значительных колебаниях входного напряжения.

В схеме импульсного повышающего преобразования обязательно используется контроллер (Control Circuit), управляющий работой ключевого транзистора:

В работе классической схемы активной boost-коррекции мощности участвуют:

  • входной (обычно мостовой) выпрямитель;
  • ключевой транзистор Q1, работающий как активный управляемый силовой ключ;
  • быстродейстующий диод D1 (обычно диод Шоттки);
  • схема управления (control circuit);
  • нагрузка R1 Load;
  • фильтрующий/накопительный конденсатор C1;
  • катушка индуктивности L1 (boost inductor).

В приведенной выше схеме контролирующий узел постоянно производит измерение входного напряжения (вывод 2 контроллера), а также тока через шунт на выводах 3 и 11. Полученные данные используются для управления временем переключения и скважностью (duty cycle) импульсов на ключевом транзисторе Q1.

Схема управления на основании действующего значения напряжения Vg(t) и тока Ig(t) формирует ШИМ-сигнал, управляющий открытием и закрытием ключевого транзистора.

Периодическое замыкание/размыкание транзисторного ключа обеспечивает заряд выходного конденсатора пульсирующим током в соответствии с формой входного синусоидального напряжения:

Осциллограммы напряжений и токов на элементах активного корректора мощности:

Использование сигнала обратной связи с выхода схемы коррекции мощности позволяет осуществить стабилизацию выходного напряжения. Для этого обычно используются резисторы обратной связи Roc1, Roc2 и перемножитель выпрямленного и выходного напряжения:

В блоках питания, питающихся от сети 220В, величина напряжения на выходе схемы APFC для обеспечения запаса по регулированию достигает 400В. Для получения квазисинусоидальной формы тока на выходе корректора мощности используют достаточно высокие частоты коммутации ключа (обычно от 300 КГц до 1 МГц).

Протекание тока в схеме boost-APFC с мостовым выпрямителем и сдвоенными ключевыми транзисторами и диодами (рисунки a и c — On-state, b и d — Off-state):

Исходя из того, что наибольшая нагрузка в схеме APFC приходится на ключевые транзисторы и диоды, именно они, а также микросхема-контроллер, чаще всего выходят из строя.

Элементная база, использующаяся в APFC-цепях блоков питания

Для обеспечения накопления отдачи энергии, дроссель схемы APFC должен иметь достаточную индуктивность (количество витков ) и размер сердечника для накопления магнитной энергии, а также диаметр провода, соответствующий протекающему току. Для выполнения этих требований он должен иметь большие размеры.

Накопительная катушка в БП Be Quiet Dark Power Pro 11 мощностью 1200 ватт выделяется внушительными габаритами:

Для обеспечения большой отдаваемой мощности в схему APFC блока питания устанавливают по нескольку ключевых транзисторов и диодов.

Два диода Шоттки CREE C3D06060G (600 вольт/9.5 ампер) и три N-канальных Mdmesh силовых MOSFET-транзистора 31N65M5 (31A 650V) 1200-ваттного блока питания Be Quiet Dark Power Pro 11:

Цоколевка транзисторов 31N65M5:

Цоколевка диодов C3D06060G:

В блоке питания той же серии на 850 ватт используется два полевых транзистора Infineon IPA60R165CP и диод CREE C3D06060G (слева):

В качестве контроллера APFC-схемы в БП Be Quiet Dark Power Pro 11 используется микросхема Infineon ICE2PCS02:

Назначение пинов у ШИМ-контроллера ICE2PCS02 (вид сверху):

Блок-схема контроллера ICE2PCS02 и его типовое включение:

Место контроллера ICE2PCS02 в схеме boostAPFC:

Примеры схем активной коррекции фактора мощности

Пример схемы APFC блока питания на 300 ватт с микросхемой ICE2PCS02:

Пример схемы активной коррекции фактора мощности на микросхеме UCC28019:

Схема активной коррекции фактора мощности в следующем примере состоит из параллельно включенных MOSFET-ов Q3 и Q10, индуктивности L11, диода D27 и накопительных конденсаторов C4 и C5:

Еще одна схема, отвечающая за коррекцию фактора мощности:

Для защиты блока питания от чрезмерной нагрузки в этом блоке в момент включения используется терморезистор RT1 сопротивлением 2.5 Ом. Сигнал VCCP включает реле RL1 (модель 835NL-1A-B-C с нормально разомкнутыми контактами) только после перехода блока питания в рабочий режим. В момент включения ток проходит через защитный терморезистор, что уменьшает нагрузку на БП. Аналогичные решения используются во многих качественных блоках питания, например, в БП Be Quiet Dark Power Pro 11, где используется реле 507-1CH-F-C.

Вам также может понравиться

C:UsersZ370MDesktopBlackMiner-F1.png

FPGA BLACKMINER F1, тестовый облачный майнинг на 19 алгоритмах

16 марта, 2019

Сравнение видеокарт GTX 1060 с памятью GDDR5X и Radeon AMD RX590

17 ноября, 2018

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector