Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тема: Линейные стабилизаторы 7809, 7812 и т. д

Тема: Линейные стабилизаторы 7809, 7812 и т.д.

Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от bbest

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от derrik

У богатых людей большая библиотека. У бедных людей большой телевизор.(с) Дэн Кеннеди.

"Мистер Андерсон, зачем, зачем Вы каждый день ходите на работу ?"(с) матрица

Re: Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от bbest

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Осцилографа не было под рукой, померял аудиокартой. На выходе конденсатор Panasonic FK 10uf 35v без нагрузки

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от bbest

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от bbest

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от dortonyan

ОСовские 142ЕН5А в корпусе 4116.4-3 тем не менее весьма и весьма.
правда не дешевы нынче

———- Добавлено в 01:10 ———- Предыдущее сообщение в 01:06 ———-

а из современных клонов мне больше всего нравятся MC7805C производства Onsemi
соотношение цена/качество непревзойденное

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от Electrovoicer

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от bbest

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от Electrovoicer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

Сообщение от Yurgen

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Линейные стабилизаторы 7809, 7812 и т.д.

да, онсеми / ST барахло делает ими разве что лампочки питать. Как-то взял штук 20, так все и выкинул. кроме генерации и нестабильно напряжения они еще уходят в защиту если на выходе появляется минимальнейший обратный потенциал (очень актуально при двуполярном питании). те-же 79е или 78е от KIA этим не страдают. но скажем 78m05 и l78l05, l79l05 STшные прекрасно работают.

они когда генерят в звуковом диапазоне, то даже писк от микросхемы можно услышать

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Читайте так же:
Как сделать горелку для газового горна

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на стабилизаторе LM317

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317 своими руками

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

Стабилизатор напряжения на микросхеме LM317 своими руками

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Регулируемый стабилизатор напряжения на LM317 для блока питания своими руками

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Читайте так же:
Ленточная пила для распиловки бревен

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Стабилизаторы тока для светодиодного тюнинга. Продлеваем жизнь светодиодам.

Если мы используем в тюнинге светодиодную начинку и не хотим, чтобы лампочки через месяц начали моргать и сгорели, обязательно необходимо использовать стабилизаторы тока, чтобы продлить диодам жизнь. Причем чем больше мы ограничим ток, потребляемый диодами, тем значительнее мы увеличим их ресурс. Ограничив ток процентов на 20-30% вы увеличите ресурс раз в 10!

Кому не впадлу читать «многобукав» и разбираться в формулах может изучить эту и вот эту статью, а также даташит на используемую для стабилизации микросхему LM317. Кому лень, тот может ограничиться моими упрощенными выкладками, ибо я не буду вдаваться в глубокую теорию и объяснять физику.

Схема подключения микросхемы в качестве стабилизатора тока из даташита будет выглядеть так:

Т.е. подключать эту схему надо вот так:

Формула для расчета результирующего выходного тока будет выглядеть так:

По этой формуле вы можете легко подобрать резистор для будущей схемы стабилизации с нужным вам током, но надо иметь ввиду, что в реальности выходной ток может незначительно отличаться, он не будет на 100% соответствовать формуле.

Чтобы узнать под какой ток вам нужно подобрать резистор, надо знать какой ток вы хотите ограничить. Я хочу сказать, что нужно измерить потребление тока вашими диодами для начала. А делается это вот так:

Подключаем тестер последовательно в цепь на режиме измерения тока и смотрим номинальное потребление тока диодом(-ами) или лентой и отталкиваясь от этих значений уже выбираем ток, который мы дадим этим потребителям в итоге.

И еще один важный момент — для диодов, которые потребляют ток больше 300mА на LM-ку нужно будет ставить радиатор, ибо греться она будет ощутимо и с ростом температуры ее характеристики будут ухудшаться.

Только старайтесь, чтобы этот радиатор не соприкасался с металлическими частями кузова, ибо крепежный контакт — это тоже Output выход микросхемы и если он лежит на радиаторе без изоляции от него, то радиатор по сути становится плюсовым контактом.

Ну а те, кто хочет дико заморочаться, могут спаять полную обвязку для микросхемы согласно даташиту:

Хотя на практике оно все прекрасно живет и без нее, главное хорошо охлаждать LM-ку.

Подключение светодиодов через стабилизатор тока

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Читайте так же:
Как переделать мотоблок в снегоход

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

схемы стабилизаторов тока для светодиодов

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

импульсный стабилизатор тока светодиода

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

стабилизатор тока для светодиода на схеме maxim

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Читайте так же:
Вышка тура срок полезного использования

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

схема стабилизатора для светодиодов на микросхеме lm317

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

линейный стабилизатор тока на микросхеме LM317

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

регулируемый стабилизатор тока для светодиодов

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

схема стабилизатора тока на 1 и 3 ампера

схема мощного стабилизатора тока

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Питание SMD светодиодов

Применение светодиодов SMD широко распространено в светодиодных лентах, led лампах, приборных панелях автомобилей, модульных платах. Они встречаются в подсветке монитора или экрана телевизора, led светильниках и других осветительных приборах.

Читайте так же:
Как правильно подключить магнитофон в машину

Ни для кого не секрет, что smd светодиоды купить можно разной яркости. На уровень свечения данных светодиодов влияет конструкция, размеры кристалла, и, конечно же, рабочий ток. В зависимости от типоразмера, каждый диод имеет свои характеристики.

SMD светодиоды имеют два контакта для подключения: анод – плюс, катод – минус. Соответственно, светодиод как полупроводниковый элемент проводит электрический ток от анода к катоду. В обратную сторону действие не производится.

Подключение светодиода через источник напряжения может привести к выгоранию кристалла, поэтому необходимо использовать источник тока. Для стабильной работы светодиода необходим некий ограничитель, поэтому в цепь с диодом устанавливают резистор, который так и называют ограничительный.

Некоторые разновидности однотипных светодиодов имеют по 4 вывода. С одной стороны 2 анода, с другой 2 катода. Данная конструкция обусловлена технологическим процессом. В данной конфигурации продублированные выводы могут исполнять роль отвода тепла и при этом быть незадействованные в электрическую цепь.

Определение ключа светодиода можно увидеть на корпусе в виде обрезанного угла. Ключ располагается ближе к катоду, минусовому значению.

Что следует помнить, перед тем как выполнить подключение светодиода?

    SMD светодиоды одного типоразмера имеют один рабочий ток. Цвет светодиода влияет на рабочее напряжение. К примеру, светодиод красного свечения имеет значительно меньшее рабочее напряжение, нежели светодиод белого цвета свечения.

Зачастую, в цепь к SMD светодиодам применяют SMD резисторы. Для подбора резистора необходимо знать вольтамперную характеристику светодиода. Важно подобрать правильный резистор, при котором на светодиод не будет поступать превышенный ток. Подача повышенного тока на светодиод, грозит снижением ресурса работоспособности.

Для выбора ограничительно резистора используют калькулятор, который можно найти на различных сайтах. Все что нужно, так это ввести данные светодиода, выбрать схему подключения, а калькулятор укажет на нужный резистор.

Питание SMD светодиодов предусматривает применение одной из схем подключения. Это может быть как последовательное, так и параллельное подключение светодиодов.

При параллельном подключении светодиодов, напряжение они будут иметь одинаковое. В такой схеме не будет диодов с абсолютно одинаковыми характеристиками, поэтому следует ожидать, что один из светодиодов будет иметь ток ниже номинального, а другой выше номинального. Такая ситуация приводит с одной стороны к недостатку тока, с другой стороны переизбыток и выход из строя светодиода. Как следствие, подключение через ограничительные резисторы каждого из светодиодов обеспечит баланс и продолжительную работу.

При последовательном подключении светодиодов, ток будет одинаковый, независимо от количества светодиодов. Изменение количества светодиодов в цепи последовательного подключения влияет на изменения напряжения.

К примеру, если подключить светодиод SMD 5050 с номинальным током 60мА и рабочим напряжением 3 вольта. Для цепи из 5-ти светодиодов понадобится драйвер светодиодов с током 60 мА и выходным напряжением 15 вольт. Для цепи из 30-ти светодиодов нужен драйвер с тем же током в 60 мА, но напряжение уже должен иметь 90 вольт.

Подводя итог, можно с уверенностью сказать, что последовательное подключение и питание светодиодов эффективнее и безопаснее.

При подключении и питании светодиодов SMD, необходимо знать три правила:

    Прямой номинальный ток является важнейшей характеристикой при подключении светодиода. Если выполнить занижение – теряем в яркости, если превысить ток – теряем в продолжительности работоспособности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector