Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Жаропрочные стали и сплавы

Жаропрочные стали и сплавы

Жаропрочная лента

Жаропрочная сталь используется при изготовлении разных деталей, которые контактируют с агрессивными средами, при этом подвергаются значительным нагрузкам, вибрациям и высокому термическому воздействию. К примеру, сюда относятся следующие изделия: турбины, печи, котлы, компрессоры и т.п. Далее представлены характеристики термостойких, жаропрочных сплавов, классификация, марки, особенности их применения.

Жаростойкая сталь (или окалиностойкая) – металлический сплав, используемый в ненагруженном или слабонагруженном состоянии и способный на протяжении длительного времени в условиях высоких температур (более 550 ºС) сопротивляться газовой коррозии. Жаропрочные металлы – изделия, которые под высоким термическим воздействием сохраняют свою структуру, не разрушаются, не поддаются пластической деформации. Важная характеристика таких металлов – условный предел ползучести и длительной прочности. Жаропрочные сплавы могут быть жаростойкими, однако не всегда такими бывают, поэтому в агрессивных средах могут быстро повредиться по причине окисления.

Свойства жаростойких и жаропрочных сплавов

Для повышения жаростойкости используются легирующие добавки, которые также улучшают прочность металлов. Благодаря легированию на поверхности сплавов образуется защитная пленка, снижающая скорость окисления изделий. Основные легирующие элементы: никель, хром, алюминий, кремний. В процессе нагрева образуются защитные оксидные пленки (Cr,Fe)2O3, (Al,Fe)2О. При содержании 5–8 % хрома жаростойкость стали увеличивается до 700–750 градусов по Цельсию, 17 % хрома – до 1000 градусов, при 25 % хрома – до 1100 градусов.

Жаропрочные марки металлов – сплавы на основе железа, никеля, титана, кобальта, упрочненные выделениями избыточных фаз (карбидов, карбонитридов и др.). Жаропрочностью обладают хромоникелевые и хромоникелевомарганцевые стали. Под воздействием высоких температур они не склонны к ползучести (медленная деформация при наличии постоянных нагрузок). Температура плавления жаропрочной стали составляет 1400-1500 °С.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью. Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия. Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Производство жаропрочной стали

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С. В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
МеталлТемпература плавления, ºC
Вольфрам3410
ТанталОколо 3000
Ванадий1900
Ниобий2415
Цирконий1855
Рений3180
МолибденОколо 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие. Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов. Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

Марки жаростойких и жаропрочных сталей

В зависимости от состояния структуры различают аустенитные, мартенситные, перлитные и мартенситно-ферритные жаропрочные металлы. Жаростойкие сплавы разделяются на ферритные, мартенситные или аустенитно-ферритные виды.

Применение мартенситных сталей.
Марки сталиИзделия из жаропрочных сталей
4Х9С2Клапаны автомобильных двигателей, рабочая температура 850–950 ºC.
1Х12H2ВМФ, Х6СМ, Х5М, 1Х8ВФ, Х5ВФУзлы, детали, работающие при температуре до 600 ºC на протяжении 1000–10000 часов.
Х5Трубы, эксплуатируемые при рабочей температуре до 650 ºC.
1Х8ВФЭлементы паровых турбин, которые работают при температуре до 500 ºC на протяжении 10000 часов и более.

Перлитные марки, имеющие хромокремнистый и хромомолибденовый состав жаропрочной стали: Х13Н7С2, Х10С2М, Х6СМ, Х7СМ, Х9С2, Х6С. Хромомолибденовые составы 12МХ, 12ХМ, 15ХМ, 20ХМЛ подходят для использования при 450-550 °С, хромомолибденованадиевые 12Х1МФ, 15Х1М1Ф, 15Х1М1ФЛ – при температуре 550-600 °С. Их применяют при производстве турбин, запорной арматуры, корпусов аппаратов, паропроводов, трубопроводов, котлов.

Ферритная сталь изготавливается путем обжига и термообработки, за счет чего приобретает мелкозернистую структуру. Сюда относят марки Х28, Х18СЮ, 0Х17Т, Х17, Х25Т, 1Х12СЮ. Содержание хрома в таких сплавах 25-33 %. Их применяют на производстве теплообменников, аппаратуры для химических производств (пиролизного оборудования), печного оборудования и прочих конструкций, которые работают длительное время при высокой температуре и не подвержены воздействию серьезных нагрузок. Чем больше хрома в составе, тем выше температура, при которой сталь сохраняет эксплуатационные свойства. Жаростойкая ферритная сталь не обладает высокой прочностью, жаропрочностью, отличается хорошей пластичностью и неплохими технологическими параметрами.

Мартенситно-ферритная сталь содержит 10-14 % хрома, легирующие добавки ванадий, молибден, вольфрам. Материал используется при изготовлении элементов машин, паровых турбин, оборудования АЭС, теплообменников атомных и тепловых ЭС, деталей, предназначенных для длительной эксплуатации при 600 ºC. Марки сталей: 1Х13, Х17, Х25Т, 1Х12В2МФ, Х6СЮ, 2Х12ВМБФР.

Аустенитные стали отличаются широким применением в промышленности. Жаропрочностные и жаростойкие характеристики материала обеспечиваются за счет никеля и хрома, легирующих добавок (титан, ниобий). Такие стали сохраняют технические свойства, стойкие к коррозии при воздействии температуры до 1000 ºC. Сравнительно со сталями ферритного класса, аустенитные сплавы обладают повышенной жаропрочностью, способностью к штамповке, вытяжке, свариванию. Термическая обработка металлов осуществляется путем закалки при 1000–1050 °С.

Применение аустенитных марок.
Марки сталиПрименение жаропрочных сталей
08X18Н9Т, 12Х18Н9Т, 20Х25Н20С2, 12Х18Н9Выхлопные системы, листовые, сортовые детали, трубы, работающие при невысокой нагрузке и температуре до 600–800 °С.
36Х18Н25С2Печные контейнеры, арматура, эксплуатируемые при температуре до 1100 °С.
Х12Н20Т3Р, 4Х12Н8Г8МФБКлапаны двигателей, детали турбин.

Аустенитно-ферритные стали отличаются повышенной жаропрочностью по сравнению с обычными высокохромистыми сплавами. Такие металлы применяются при изготовлении ненагруженных изделий, рабочая температура 1150 ºC. Из марки Х23Н13 изготавливают пирометрические трубки, из марки Х20Н14С2, 0Х20Н14С2 – печные конвейеры, резервуары для цементации, труб

Хирургическая сталь и нержавеющая сталь: в чем разница?

Хирургическая сталь против нержавеющей стали

Не редко можно задаться вопросом о различиях между разными типами стали. Это может быть хирургическая сталь или нержавеющая сталь. В нашей отрасли понимание мельчайших уникальных различий между различными сортами стали является важной проблемой. В конце концов, выбор простейшего материала для конкретного приложения — важный шаг в любом проекте. В случае металлических материалов характеристики различных типов стали проявляются после того, как они будут разрезаны, согнуты, штампованы или обработаны другим способом.

В сегодняшнем посте мы подробно рассмотрим хирургическую сталь в сравнении с нержавеющей сталью. Если вы когда-нибудь задумывались, чем отличаются — и чем похожи — эти стали, вы попали в нужное место. Давай прокатимся

Что такое нержавеющая сталь?

Хирургическая сталь против нержавеющей стали

Нержавеющая сталь — это стальной сплав, в основном состоящий из железа и примерно 10% хрома. Также могут присутствовать небольшие количества других металлов, таких как никель, титан и медь. Кроме того, углерод может быть обычной неметаллической добавкой в ​​нержавеющей стали.

Содержание хрома в нержавеющей стали существенно повышает коррозионную стойкость сплава — оно предотвращает окисление железа. Если нет окисления, нет возможности для развития ржавчины.

Из четырех основных вариантов стали (нержавеющая, углеродистая, инструментальная, легированная) нержавеющая сталь считается наиболее устойчивой к коррозии. Однако нержавеющая сталь не полностью защищена от коррозии. При определенных условиях, например при многократном воздействии высококонцентрированной соленой воды, даже хромированная сталь может подвергнуться коррозии.

Он также отличается высокой термостойкостью, что делает его пригодным для сборки кухонных предметов. Нержавеющая сталь имеет более привлекательный внешний вид, чем обычная сталь. В зависимости от свойств хромистая сталь дополнительно делится на следующие подгруппы:

  • Дуплекс из нержавеющей стали
  • Мартенситная нержавеющая сталь
  • Ферритная нержавеющая сталь
  • Аустенитная нержавеющая сталь

Что такое хирургическая сталь?

Что такое хирургическая сталь?

Как следует из названия, хирургическая сталь означает, что она тесно связана с биомедицинскими приложениями. Хирургическая сталь может быть разновидностью нержавеющей стали, которая специально используется для хирургических операций.

Хирургическая сталь, иногда упоминаемая как хирургическая нержавеющая сталь, не имеет официального определения этого металла. В зависимости от химического состава доступно несколько различных типов хромистой стали.

Тем не менее, разновидности хромистой стали с лучшими уровнями коррозионной стойкости предназначены для биомедицинского использования.

Некоторые общепринятые типы хирургической стали включают аустенитную нержавеющую сталь 316 и мартенситную нержавеющую сталь 440 и 420. Большинство металлических хирургических сталей состоят примерно на 2-3% из молибдена. Это часто помогает в обеспечении устойчивости к коррозии. Хирургическая сталь может использоваться как на производстве, так и в хирургии.

Аустенитная хромовая сталь является наиболее свариваемой. Он составляет самую важную долю хромистой стали на рынке стали. Мартенситная сталь — это еще один вид хромистой стали, в которой около 20% хрома. Было бы полезно рассмотреть хирургическую сталь, потому что она является наиболее устойчивой к коррозии разновидностью хромистой стали.

Хирургическая сталь и нержавеющая сталь: в чем разница?

Хотя хирургическая сталь может быть разновидностью нержавеющей стали, все нержавеющие стали не являются хирургической сталью. Хирургические стали обладают наилучшей коррозионной стойкостью и предназначены для биомедицинских применений. По сравнению с другими типами стали, хромовая сталь обычно является самой дорогой. Кроме того, среди нержавеющей стали хирургическая сталь является самой дорогой.

Приложения

Из-за стоимости материала нержавеющая сталь отличается от других сталей, таких как сталь и зубчатая сталь. Чаще всего нержавеющая сталь используется в кулинарии. Столовые приборы, посуда, бытовая техника и кухонные принадлежности из хромированной стали очень модны и привлекательны.

Нержавеющая сталь дополнительно используется для изготовления различных компонентов в автомобильной и авиакосмической промышленности. Он также используется в некоторых строительных приложениях.

Хирургическая сталь используется в биомедицине. Хирургические инструменты, такие как щипцы, ретракторы и иглодержатели, сделаны из хирургической стали, но это еще не все. Хирургическая сталь имеет долгую историю использования в ортопедических устройствах и имплантатах.

Плюсы и минусы нержавеющей стали

Хирургическая сталь против нержавеющей стали

Плюсы

  • Нержавеющая сталь имеет серебристую отделку, что делает ее более ценной. Одним словом, он имеет большую эстетическую ценность.
  • Нержавеющая сталь является своего рода доступной по цене по сравнению с хирургической сталью.
  • Этот металл очень прочный. Он может противостоять ежедневному износу и, таким образом, является отличным компаньоном для повседневного использования.
  • Он устойчив к коррозии и царапинам из-за слоя хрома, который предотвращает окисление железа.
  • Чистить нержавеющую сталь очень просто; все, что вам нужно, это теплая вода и мыло. Аккуратно вымойте его тряпкой. Как только вы закончите, вытрите его насухо, и все готово.
  • Нержавеющая сталь не теряет естественного блеска, поэтому полировка не требуется.

Минусы

Твердая природа нержавеющей стали затрудняет работу с некоторыми приложениями, такими как ювелирные изделия.

Известно, что некоторые сплавы нержавеющей стали, такие как никель, являются аллергенами.

Плюсы и минусы хирургической стали

Плюсы

  • Хирургическая хромированная сталь гипоаллергенна, что делает ее идеальной для людей с чувствительными ушами или кожей в целом.
  • Металлический сплав устойчив к коррозии, царапинам и потускнению, что делает его пригодным для использования в кузовах.
  • Он подходит для биомедицинских применений из-за своей коррозионной стойкости, а также из-за высокой температуры замерзания благодаря молибдену.
  • Хирургическая хромированная сталь также не теряет естественного блеска, поэтому ее не нужно полировать.

Минусы

Это дороже нержавеющей стали.

Некоторые марки хирургической хромистой стали содержат никель, поэтому не подходят для всех пользователей.

Хирургическая сталь против нержавеющей стали: Какую сталь мне выбрать?


Как я уже говорил в этом посте, понимание различий между хирургической сталью и нержавеющей сталью может быть ключевым компонентом выбора наиболее простого материала для вашего будущего проекта. Надеюсь, полученные знания были вам полезны.

Если вам нужна дополнительная информация о нержавеющей стали, свяжитесь с нами по адресу Рош Индастри. Мы поможем вам выбрать подходящую сталь для вашего применения.

Рошиндустри специализируется на высоком качестве Быстрое прототипирование, быстрый мелкосерийное производство и крупносерийное производство. Услуги быстрого прототипа, которые мы предоставляем, — это профессиональный инжиниринг, Обработка CNC включая фрезерные и токарные станки с ЧПУ, Изготовление листового металла или прототипирование листового металла, Умрите литье, металлическое тиснение, Вакуумное литье, 3D печать, SLA, Изготовление прототипов методом экструзии пластика и алюминия, Быстрая оснастка, Быстрое литье под давлением, Обработка поверхности закончить услуги и другие услуги быстрого прототипирования Китая, пожалуйста свяжитесь с нами прямо сейчас.

Коррозионностойкие нержавеющие стали

определение, химический состав, классификация и применение.

Коррозионностойкая сталь, нержавеющая сталь или просто «Нержавейка» — это легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.

Способность стали с высоким содержанием хрома сопротивляться кислотной коррозии обнаружил английский учёный Гарри Бреарли и в 1913 году он получил патент. Этот год считается годом рождения «нержавейки». Автором термина «нержавеющая сталь» является Эрнест Стюарт – друг Гарри Бреарли, работавшему в компании по производству столовых приборов, которому были переданы первые образцы ножей, изготовленный из коррозионностойкой стали.

Химический состав

При выборе химического состава коррозионностойкого сплава руководствуются так называемым правилом: если к металлу, неустойчивому к коррозии (например, к железу) добавлять металл, образующий с ним твердый раствор и устойчивый против коррозии (к примеру хром), то защитное действие проявляется скачкообразно при введении моля второго металла (коррозионная стойкость возрастает не пропорционально количеству легирующего компонента, а скачкообразно). Основной легирующий элемент нержавеющей стали — хром Cr (12-20 %); помимо хрома, нержавеющая сталь содержит элементы, сопутствующие железу в его сплавах (С, Si, Mn, S, Р), а также элементы, вводимые в сталь для придания ей необходимых физико-механических свойств и коррозионной стойкости (Ni, Mn, Ti, Nb, Co, Mo).

Сопротивление нержавеющей стали к коррозии напрямую зависит от содержания хрома: при его содержании 13 % и выше сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17 % — коррозионностойкими и в более агрессивных окислительных и других средах, в частности, в азотной кислоте крепостью до 50 %.

Причина коррозионной стойкости нержавеющей стали объясняется, главным образом, тем, что на поверхности хромсодержащей детали, контактирующей с агрессивной средой, образуется тонкая плёнка нерастворимых окислов, при этом большое значение имеет состояние поверхности материала, отсутствие внутренних напряжений и кристаллических дефектов.

В сильных кислотах (серной, соляной, фосфорной и их смесях) применяют сложнолегированные сплавы с высоким содержанием Ni и присадками Mo, Cu, Si.

Классификация

По химическому составу нержавеющие стали делятся на:

Хромистые, которые, в свою очередь, по структуре делятся на;

Полу- ферритные (мартенситно-ферритные стали);

Хромо-марганцево-никелевые (классификация совпадает с хромоникелевыми нержавеющими сталями).

Различают аустенитные нержавеющие стали, склонные к межкристаллитной коррозии, и стабилизированные — с добавками Ti и Nb. Значительное уменьшение склонности нержавеющей стали к межкристаллитной коррозии достигается снижением содержания углерода (до 0,03 %).

Нержавеющие стали, склонные к межкристаллитной коррозии, после сварки, как правило, подвергаются термической обработке.

Широкое распространение получили сплавы железа и никеля, в которых за счёт никеля аустенитная структура железа стабилизируется, а сплав превращается в слабо-магнитный материал.

Мартенситные и мартенситно-ферритные стали

Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности, ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся, стали типа 30Х13, 40Х13 и т. д.

Ферритные стали

Эти стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроении. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся, стали 400 серии.

Аустенитные стали

Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. К данному классу относятся стали 300 серии. Это марки стали как AISI 304 (L), AISI 321, AISI 316 (L). Данные марки стали занимают лидирующие позиции при производстве различного технологического оборудования в пищевой, химической и других отраслях промышленности.

Аустенитно-ферритные и аустенитно-мартенситные стали

Аустенитно-ферритные стали. Преимущество сталей этой группы — повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зёрен при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость. Аустенитно-ферритные стали находят широкое применение в различных отраслях современной техники, особенно в химическом машиностроении, судостроении, авиации. К этому виду относятся, стали типа 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т.

Аустенитно-мартенситные стали. Потребности новых отраслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разработке сталей аустенито-мартенситного (переходного) класса. Это стали типа 07Х16Н6, 09Х15Н9Ю, 08Х17Н5М3.

Сплавы на железоникелевой и никелевой основе.

При изготовлении химической аппаратуры, особенно для работы в серной и соляной кислотах, необходимо применять сплавы с более высокой коррозионной стойкостью, чем аустенитные стали. Для этих целей используют сплавы на железно-никелевой основе типа 04ХН40МТДТЮ и сплавы на никель-молибденовой основе Н70МФ, на хромоникелевой основе ХН58В и хромоникельмолибденовой основе ХН65МВ, ХН60МБ.

Производство и применение.

Из хромистых нержавеющих сталей изготавливают:

Клапаны гидравлических прессов;

Из хромо-никелевых и хромо-марганцево-никелевых нержавеющих сталей изготавливают:

Бытовые предметы, в частности, столовая посуда (пищевые марки стали)

Стабилизированные аустенитные нержавеющие стали:

Сварная аппаратура, работающей в агрессивных средах

Изделия, работающие при высоких температурах — 550—800 °C

В пищевой промышленности различное оборудование и механизмы.

Нержавеющие стали используются как в деформированном, так и в литом состоянии.

Классификация коррозионно-стойких сталей и сплавов

Коррозионная стойкость может быть повышена, если содержание углерода свести до минимума, если ввести легирующий элемент, образующий с железом твердые растворы в таком количестве, при котором скачкообразно повысится электродный потенциал сплава.

Важнейшими коррозионно-стойкими техническими сплавами являются нержавеющие стали с повышенным содержанием хрома: хромистые и хромоникелевые. На рис. 20.1 показано влияние количества хрома в железохромистых сплавах на электрохимический потенциал сплава.

Рис 20.1. Влияние хрома на потенциал сплавов

Хромистые стали.

Содержание хрома должно быть не менее 13% (13…18%).

Коррозионная стойкость объясняется образованием на поверхности защитной пленки оксида .

Углерод в нержавеющих сталях является нежелательным, так как он обедняет раствор хромом, связывая его в карбиды, и способствует получению двухфазного состояния. Чем ниже содержание углерода, тем выше коррозионная стойкость нержавеющих сталей.

Различают стали ферритного класса 08Х13, 12Х17, 08Х25Т, 15Х28. Стали с повышенным содержанием хрома не имеют фазовых превращений в твердом состоянии и поэтому не могут быть подвергнуты закалке. Значительным недостатком ферритных хромистых сталей является повышенная хрупкость из-за крупнокристаллической структуры. Эти стали склонны к межкристаллитной коррозии (по границам зерен) из-за обеднения хромом границ зерен. Для избежания этого вводят небольшое количество титана. Межкристаллитная коррозия обусловлена тем, что часть хрома около границ зерна взаимодействует с углеродом и образует карбиды. Концентрация хрома в твердом растворе у границ становится меньше 13% и сталь приобретает отрицательный потенциал.

Из-за склонности к росту зерна ферритные стали требуют строгих режимов сварки и интенсивного охлаждения зоны сварного шва. Недостатком является и склонность к охрупчиванию при нагреве в интервале температур 450…500 o С

Из ферритных сталей изготавливают оборудование азотно-кислотных заводов (емкости, трубы).

Для повышения механических свойств ферритных хромистых сталей в них добавляют 2…3 % никеля. Стали 10Х13Н3, 12Х17Н2 используются для изготовления тяжелонагруженных деталей, работающих в агрессивных средах.

После закалки от температуры 1000 o C и отпуска при 700…750 o С предел текучести сталей составляет 1000 МПа.

Термическую обработку для ферритных сталей проводят для получения структуры более однородного твердого раствора, что увеличивает коррозионную стойкость.

Стали мартенситного класса 20Х13, 30Х13, 40Х13. После закалки и отпуска при 180…250 o С стали 30Х13, 40Х13 имеют твердость 50…60 HRC и используются для изготовления режущего инструмента (хирургического), пружин для работы при температуре 400…450 o , предметов домашнего обихода.

Стали аустенитного класса – высоколегированные хромоникелевые стали.

Никель – аустенитообразующий элемент, сильно понижающий критические точки превращения. После охлаждения на воздухе до комнатной температуры имеет структуру аустенита.

Нержавеющие стали аустенитного класса 04Х18Н10, 12Х18Н9Т имеют более высокую коррозионную стойкость, лучшие технологические свойства по сравнению с хромистыми нержавеющими сталями, лучше свариваются. Они сохраняют прочность до более высоких температур, менее склонны к росту зерна при нагреве и не теряют пластичности при низких температурах.

Хромоникелевые стали коррозионностойки в окислительных средах. Основным элементом является хром, никель только повышает коррозионную стойкость.

Для большей гомогенности хромоникелевые стали подвергают закалке с температуры 1050…1100 o C в воде. При нагреве происходит растворение карбидов хрома в аустените. Выделение их из аустенита при закалке исключено, так как скорость охлаждения велика. Получают предел прочности = 500…600 МПа, и высокие характеристики пластичности, относительное удлинение = 35…45%.

Упрочняют аустенитные стали холодной пластической деформацией, что вызывает эффект наклепа. Предел текучести при этом может достигнуть значений 1000…1200 МПа, а предел прочности – 1200…1400 МПа.

Для уменьшения дефицитного никеля часть его заменяют марганцем (сталь 40Х14Г14Н3Т) или азотом (сталь 10Х20Н4АГ11).

Аустенитно-ферритные стали 12Х21Н5Т, 08Х22Н6Т являются заменителями хромоникелевых сталей с целью экономии никеля.

Свойства сталей зависят от соотношения ферритной и аустенитной фаз (оптимальные свойства получают при соотношении – Ф:А=1:1 ). Термическая обработка сталей включает закалку от температуры 1100…1150 o C и отпуск-старение при температуре 500…750 o C.

Аустенитно-ферритные стали не подвержены коррозионному растрескиванию под напряжением: трещины могут возникать только на аустенитных участках, но ферритные участки задерживают их развитие. При комнатных температурах аустенитно-ферритные стали имеют твердость и прочность выше, а пластичность и ударную вязкость ниже, чем стали аустенитного класса.

Кроме нержавеющих сталей в промышленности применяют коррозионно-стойкие сплавы – это сплавы на никелевой основе. Сплавы типа хастеллой содержат до 80 % никеля, другим элементом является молибден в количестве до 15…30 %. Сплавы являются коррозионно-стойкими в особо агрессивных средах (кипящая фосфорная или соляная кислота), обладают высокими механическими свойствами. После термической обработки – закалки и старения при температуре 800 o С – сплавы имеют предел прочности МПа, и твердость . Недостатком является склонность к межкристаллической коррозии, поэтому содержание углерода в этих сплавах должно быть минимальным.

голоса
Рейтинг статьи
Читайте так же:
Домашняя коптильня своими руками видео
Ссылка на основную публикацию
Adblock
detector