Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Физико-химические свойства глинозема

Физико-химические свойства глинозема

Прежде чем перейти к характеристике отдельных процес­сов получения (извлечения) чистой окиси алюминия из руд, необходимо кратко ознакомиться с некоторыми физико-хими­ческими свойствами глинозема, определяющими поведение его в этих процессах.

Полиморфизм глинозема. Полиморфизм, мак известно, представляет собой способность одного и того же вещества образо­вывать различные типы кристаллической (пространственной) решетки — давать полиморфные разности, обладающие неред­ко глубоким различием в свойствах.

Для безводной окиси алюминия обнаружено несколько поли­морфных разностей, из которых, однако, безусловно установле­ны, хорошо изучены и имеют большое значение в производстве глинозема две, которые мы и рассмотрим ниже,

Первая из них – aAl2O3 или корунд, известна с дав­них времен и является единственной формой безводной окиси алюминия, встречающейся в естественных горных породах в виде бесцветных или окрашенных небольшими примесями дру­гих окислов кристаллов (рубин, сапфир). Чистый расплавлен­ный глинозем во время остывания кристаллизуется в форме aAl2O3. Все виды гидратов окиси алюминия при нагревании до 1200° также превращаются а aAl2O3. Кристаллизуется корунд в гексагональной системе, причем внешний вид кристаллов обыч­но веретенообразный или бочкообразный (фиг. 9). Корунд отли­чается высокой твердостью, занимая в минералогической шкале Мооса предпоследнее перед алмазом место — 9. Он практически не гигроскопичен и имеет наибольший удельный вес из всех полиморфных разностей Al2O3—3,9—4,0.

Кристаллические формы корунда

Вторая полиморфная разность безводной окиси алюми­ния — yAl2O3, открытая Ульрихом в 1925 г., кристаллизуется в кубической системе (размер ребра куба элементарной кристал­лической ячейки — 7,90 * 10 -8 см) в характерных октаедрических формах. В природе yAl2O3 не встречаемся и образуется при обезвоживании трехводной окиси алюминия — гидр аргилли­та в температурном интервале 500 — 900°. Отличается большой дисперсностью и гигроскопичностью. Удельный вес yAl2O3 — 3,77. При нагревании выше 900° yAl2O3 начинает превращаться в aAl2O3, что полностью завершается при 1200°.

Водная окись алюминия известна в виде следующих стабиль­ных форм: диаспора, бемита и гидраргиллита.

Диаспор и бемит являются полиморфными разностями одноводной окиси алюминия и отвечают химическому составу метаалюминиевой кислоты (НAlO2):

Al2O3* H2O=2AlOOH=2 НAlO2

Как диаспор, так и бемит встречаются в виде природных мине­ралов, входя в состав бокситов. Бемит образуется также при обезвоживании гидраргиллита при 250°. Оба кристаллизуются в ромбической системе, отличаясь друг от друга показателями преломления. Обыч­ной формой кристал­лов диаспора являют­ся плоские призмы. При нагре­вании до 500° диаспор и бемит полностью теряют кристаллиза­ционную воду, превра­щаясь в безводную окись. Однако характер процесса обезво­живания для диаспора и бемита не одинаков. Кривая обезвоживания ди­аспора показывает, что дегидратация этого минерала происходит полностью в температурном интервале 410—450° и является линейной функ­цией температуры. Кривая же обезвоживания бемита имеет другой вид и состоит из двух характерных участков. Первый из них лежит меж­ду 300 и 450° и имеет форму гипер­болической кривой. В этом темпера­турном интервале удаляется только примерно 25% кристаллизационной воды бемита. Второй участок нахо­дится между 450 и 490° и соответ­ствует более интенсивному обезво­живанию, аналогичному для диаспора. Таким образом, если удаление связанной воды для диаспора заканчивается полностью при 450°, то для бемита этот процесс только начинается, оканчиваясь, примерно, при 500°. Для сме­сей диаспора и бемита кривые их обезвоживания занимают про­межуточное положение. При обезвоживании диаспор превращается непосредственно в aAl2O3, а бемит —- сначала в yAl2O3.

Читайте так же:
Валик для фитнеса спортмастер

Гидраргиллит, или гибсит, является, по-видимому, единственной формой трехводной окиси алюминия. Полиморфной разности для нее не обнаружено, Гидраргиллит отвечает химическому со­ставу ортоалюминиевой кислоты (Н3А1О3): Al2O3*3 H2O=2А1(ОН)3=2 Н3А1О3. Встречается в природе как минерал и входит в состав бокситов. Кристаллизуется в моноклинной системе в виде табличек. Представляет собой конечную форму кристаллической гидроокиси алюминия, выпадающей из алюминиевых растворов при низких температурах. Гидраргил­лит, обезвоженный при 250°, теряет две молекулы кристаллиза­ционной воды, превращаясь в бемит.

В соответствии с изложенным различные формы окиси и гидроокиси алюминия индивидуальной кристаллической ре­шеткой могут быть классифицированы в два полиморфные ря­да (ряды Габера) — a ряд и y ряд.

Алюминий и цинк как амфотерные элементы

Что такое металлы и неметаллы – понять нетрудно. Металлы обладают восстановительными свойствами и в химической реакции отдают электроны. При этом, гидроксиды металлов – это основания. Неметаллы, напротив, являются окислителями и забирают электроны. Гидроксиды неметаллов – это кислоты.

Амфотерные соединения могут проявлять как окислительные, так и восстановительные свойства в зависимости от реакционной среды. Гидроксиды таких атомов могут выступать в качестве кислот или оснований.

Расположение амфотерных элементов в таблице Менделеева

В таблице Менделеева положение того или иного атома сообщает значительную часть информации о строении атома этого элемента и его химических свойствах. Периодической эта система называется, потому что в разных периодах (горизонтальные строчки) и группах (вертикальные столбцы) повторяется определенное качество элементов. Так, вся первая группа является щелочными металлами, а седьмая – галогенами (неметаллами), восьмая – инертными газами. Но, это характерно только для главной подгруппы. В побочной группе располагаются амфотерные элементы.

Строение атома амфотерных элементов

Особенность химических свойств амфотерных элементов связана со строением их атомов. У них происходит предзаполнение s-подуровня, из-за этого, незаполненным оказывается всегда d-подуровень. Все представители побочных подгрупп являются p- или d-элементами. В различных условиях может происходить перескок электронов с подуровней и увеличение неспаренных электронов.

Таблица. Строение атомов некоторых амфотерных элементов

Для некоторых из них характерен проскок электрона. Это состояние, при котором электрон с последнего уровня перескакивает на следующий. По этой причине оказывается неспаренным s-электрон.

Представители амфотерных элементов

Все элементы побочных групп являются амфотерными и проявляют сходные химические свойства. Наиболее распространены в природе три элемента: Al, Zn и Cr.

Цинк как амфотерный элемент

Цинк — это относительно мягкий светло-серый металл. Является одним из самых распространенных амфотерных элементов. В природе цинк встречается в составе 66 минералов, наиболее распространенные представлены в таблице.

Таблица. Минералы, в состав которых входит Zn

Цинк является d-элементом.

Химические свойства цинка обусловлены наличием незаполненной p-обитали. С s-подуровня происходит перескок электрона, за счет чего появляется два неспаренных электрона: Zn* 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 4p 1 .

Алюминий как амфотерный элемент

Al является самым распространенных элементом не только среди металлов, но и во всей таблице Менделеева. Он занимает 3 место после кислорода (O2) и кремния (Si).

Это мягкое вещество серебристо-серого цвета с низкой температурой плавления. В природе встречается как в виде минералов, так и в виде самородков. Является примесью многих минералов.

Читайте так же:
Анаэробный фиксатор резьбы разъемный

Наиболее распространенные минералы, содержащие Al:

  • Авгит ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6)
  • Боксит (Al2O3xH2O)
  • Нефелин (Элиолит) ((NaK)AlSiO4)
  • Алунит (K2SO4Al2(SO4)3·4Al(OH)3)
  • Силлиманит ((Al2O3)(SiO2))
  • Корунд (Al2O3)

Последний минерал в зависимости от примесей имеет разный окрас. Применяется в ювелирном деле и считается полудрагоценным камнем.

Его атом содержит 13 электронов, распределенных по 3 электронным уровням: 1s 2 2s 2 2p 6 3s 2 3p 1 . Это р-элемент, у которого может происходить переход электрона с s-подуровня на свободную р-орбиталь. За счет этого, металл приобретает 3 неспаренных электрона: Al* 1s 2 2s 2 2p 6 3s 1 3p 2

Свойства металлов Al и Zn как простых веществ

Цинк – довольно плотный металл. Сохраняет свои качества в небольшом диапазоне температур: при низких значениях (до -30) становится хрупким, при температурах выше 100 0 С очень пластичен. Это используется в металлургии, прокатывая цинковые листы толщиной несколько миллиметров (цинковая фольга). Некоторые примеси резко повышают хрупкость металла, поэтому используется очищенный материал.

Al – сильно пластичный легкий металл с низкой температурой плавления. Обладает высокой ковкостью и электропроводностью.

На воздухе он покрывается оксидной пленкой поэтому практически не подвергается коррозии. Благодаря этому он используется при изготовлении проводов и корпусов машинной техники.

Получение алюминия и цинка

Основной способ получения металлов – выделение их из состава руды. Для этого используется наиболее богатая металлом горная порода. Алюминий получают из боксита. Этот процесс состоит из трех этапов:

  • Добыча горной породы;
  • Обогащение (увеличение концентрации метала за счет очистки от примесей);
  • Выделение чистого вещества путем электролиза.

Получение цинка производится несколькими методами – электролитическим (так же как и Al) и пирометаллургический. Второй способ основан на восстановлении цинка из его оксида углеродом или оксидом углерода II (угарным газом):

ZnO + CO ⇄ Zn + CO2

Достоинство этого метода в том, что продукты первой реакции могут использоваться во второй, что снижает количество выбросов в атмосферу.

Химические свойства алюминия и цинка

Оба вещества способны реагировать как обычные металлы. Так же, есть ряд специфических реакций.

Взаимодействие с неметаллами

С неметаллами и оба вещества взаимодействуют с образованием бинарных соединений – солей. Как правило, скорость течения реакции и условия зависят от активности неметалла. Так, с кислородом реакция идет реакция образования оксида при нагревании с цинком:

с алюминием в обычных условиях:

Оксид алюминия покрывает изделие плотной пленкой (оксидная пленка) и доступ кислорода прекращается, поэтому, для полной реакции его нужно брать в порошке.

Zn не реагирует с Br, N2, Si, C, H2.

Al не вступает в реакцию только с H2.

Взаимодействие с металлами

С восстановителями оба металла образуют сплавы:

  • Алюминиды CuAl2, CrAl7, FeAl3
  • Латунь ZnCu

Это не является химической реакцией, так как не происходит передачи электронов или изменения химических свойств веществ.

Взаимодействие с кислотами и щелочами

С кислотами и алюминий, и цинк взаимодействуют при обычных условиях с образованием солей:

Результат реакции со щелочами зависит от условий реакции: если реакция идет в растворе (в присутствии воды), то образуются комплексные соли:

В безводной среде (сплавление) образуются соли металлических кислот:

2Al + 6KOH = 2KAlO2 + 2K2O + 3H2 (KAlO2 – алюминат калия).

Читайте так же:
Межповерочный интервал для электросчетчиков

Взаимодействие с водой

Алюминий активно взаимодействует с водой, если очистить оксидную пленку. Реакцию нужно проводить быстро, так как пленка образуется практически мгновенно:

Zn реагирует с водой при очень высокой температуре (при накаливании до красного состояния):

Оксиды цинка и алюминия

ZnO – оксид, широко используемый в химической промышленности. Он применяется для получения солей. В реакции со щелочами образуются комплексные соли, легко разрушаемые кислотами.

Al2O3 –глинозем. Имеет очень плотную кристаллическую решетку, из-за чего практически не реагирует при обычных условиях. При экстремально высоких температурах вступает в реакцию со щелочами:

Может вступать в реакцию с кипящими кислотами с образованием комплексных солей.

Применение алюминия и цинка

Al как самый распространенный элемент широко используется в химической промышленности. Он способен вытеснять восстановители из соединений, поэтому применяется для получения металлов. Такой метод называется алюмотермия.

Благодаря оксидной пленке и низкой плотности используется в автомобиле-, самолето- и ракетостроении для снижения массы изделия. В строительстве алюминий применяется для изготовления каркасов высотных зданий.

Zn применяется для снижения коррозии металлических изделий –цинкование. Порошок этого металла используется для изготовления масляных красок с металлическим блеском. Также, оксид служит в качестве антисептика. Мази на основе цинкового порошка используются в лечении лишаев и других инфекционных поражений кожи.

Сплавы алюминия и цинка

В металлургии практически не применяются в чистом виде из-за высокой пластичности. Для того чтобы сохранить достоинства металлов, но убрать недостатки осуществляют сплавление с другими металлами.

Сплавы алюминия

Сплавы алюминия делятся на две группы:

  • Литейные (без сохранения пластичности);
  • Конструкционные (деформируемые).

Таблица. Характеристика основных сплавов алюминия

Сплавы цинка

Самый используемый сплав цинка – латунь (Cu — Zn). Он обладает хорошими сварными свойствами, поэтому применяется в изготовлении кухонной утвари и различных изделий интерьера.

Если к этому сплаву добавляют свинец, этот сплав называется мунц-металл. Оба сплава применяются при литье труб и каркасов.

Кислотно основные свойства алюминия

Ключевые слова конспекта: алюминий, свойства алюминия, получение и применение алюминия, алюмосиликаты, глина, оксид алюминия, боксит, дюралюмин, дюраль.

Алюминий Al – элемент № 13, 3–го периода, IIIA группы, Ar (Al) = 27. Электронная конфигурация невозбуждённого атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 :

Алюминий

Алюминий является р-элементом. В своих соединениях он всегда имеет степень окисления +3. Оксид и гидроксид алюминия (Al2O3 и Al(ОН)3 соответственно) амфотерны. Существует водородное соединение алюминия – гидрид алюминия AlH3 (алан) – белый порошок.

По распространённости в земной коре алюминий занимает 4-е место (после О, Si, Н). Основная масса алюминия сосредоточена в алюмосиликатах. Продуктом разрушения алюмосиликатов является глина, она состоит из каолинита – Al2O3 • 2SiO2 • 2H2O. Обычно глина содержит примесь соединений железа, придающую ей бурый цвет. Из других минералов наибольшее распространение имеет боксит – Al2O3nH2O.

АЛЮМИНИЙ – ПРОСТОЕ ВЕЩЕСТВО

Алюминий – серебристо-белый металл (на воздухе покрывается плотной тонкой плёнкой оксида), плотность 2,7 г/см 3 (лёгкий металл), легкоплавкий (t°пл. = 660 °С).

На воздухе алюминий покрывается прочной тончайшей (10 –8 м) защитной плёнкой оксида, которая препятствует проникновению кислорода к металлу и практически полностью прекращает дальнейшее окисление.

Читайте так же:
Как сделать держак для сварки своими руками

Алюминиевый порошок сгорает при нагревании в кислороде:

При окислении алюминия выделяется большое количество теплоты. Нагретый порошок алюминия при попадании в атмосферу кислорода реагирует с выделением огромного количества теплоты, достигается температура до 3000–3500 °С. Тепловой эффект реакции алюминия с кислородом чрезвычайно высок, образование этого соединения энергетически очень выгодно.

При нагревании алюминий легко реагирует с серой:

Алюминиевый порошок легко реагирует с галогенами и сгорает в атмосфере хлора. Кусочек алюминия, с которого снята оксидная плёнка, бурно реагирует с бромом. Эти реакции идут без нагревания:

Алюминиевый порошок реагирует с кристаллическим йодом, в присутствии катализатора (или при нагревании) выделяются капельки воды.

Алюминий без оксидной плёнки реагирует с азотом при сильном нагревании (800–1200 °С), образуя нитрид алюминия:

При сильном нагревании (1500–1700 °С) алюминий реагирует с углеродом (графитом) с образованием карбида алюминия:

Алюминий непосредственно не реагирует с водородом. Гидрид алюминия получают косвенным путём.

Алюминий энергично взаимодействует с водой, если механическим путём или амальгамированием снять предохраняющее действие оксидной плёнки:

Вследствие высокого теплового эффекта соединения алюминия с кислородом алюминий активно восстанавливает многие металлы из оксидов (алюмотермия):

При этом реакция обычно сопровождается выделением большого количества тепла и повышением температуры до 1200–3000 °С. Алюмотермия применяется в производстве марганца, хрома, ванадия, вольфрама, ферросплавов.

Как метод получения металлов, алюмотермия была предложена Н. Бекетовым в 1859 г. Её используют для получения многих металлов (Мп, Cr, V, W, Sr, Ва и др.).

Алюминий реагирует с галогеноводородными кислотами, разбавленной серной и азотной кислотами с образованием солей, в которых алюминий находится в катионной форме, и выделением водорода. Например:

Алюминий не реагирует с азотной и серной концентрированными кислотами в обычных условиях. На поверхности алюминия образуется защитная оксидная плёнка, алюминий пассивируется. Алюминий реагирует с разбавленной азотной кислотой (2–3 моль/л) с образованием нитрата алюминия, нитрата аммония и воды:

Алюминий активно взаимодействует с растворами щелочей. Щёлочи растворяют оксидную плёнку на поверхности алюминия. Образуются соли, в которых алюминий находится в анионной форме, и выделяется водород:

Алюминий реагирует с растворами солей, восстанавливая катионы менее активных металлов (металлов, расположенных в ряду напряжений правее алюминия):

ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЛЮМИНИЯ

Основным сырьём для производства алюминия служат бокситы, содержащие 32–60% глинозёма Al2O3. Алюминий получают электролизом расплава глинозёма Al2O3 в расплавленном криолите Na3AlF6. В электролизёре находится 6–8% глинозёма и 92– 94% криолита. Криолит в ходе электролиза не расходуется. Его получают искусственным путём – взаимодействием Al(ОН)3, HF и Na2CO3.

На катоде происходит восстановление алюминия: Al 3+ + 3е – → Al 0 ,

на аноде – окисление его оксида: 2Al2О3 – 12е – → 4Al 3+ + 3O2↑,

а затем вторичная реакция на аноде: С + O2 СO2 или 2С + O2 → 2СО

По широте применения сплавы алюминия занимают 2–е место после чугуна и стали. Алюминий – основа лёгких сплавов (например, дюралюмина, силумина), его применяют для производства различных ёмкостей и аппаратов, фольги и проволоки, в качестве раскислителя стали и восстановителя в алюмотермии. Высокая электропроводность и коррозионная стойкость позволяют применять aлюминий для изготовления электрических проводов, кабелей, конденсаторов. Лёгкость, коррозионная стойкость алюминия и относительная нетоксичность его соединений позволяют применять aлюминий для изготовления бытовой посуды, а алюминиевую фольгу – в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Читайте так же:
Как сделать скобы в домашних условиях

Из сплавов алюминия наиболее распространены дюралюмин, сокращённо – дюраль. Большую твёрдость дюралю по сравнению с чистым алюминием придают добавки меди, марганца и т. д. Дюралюмин – основной конструкционный материал в самолётостроении. Сплавы алюминия широко используются в автомобилестроении, судостроении, авиационной технике.

Конспект урока по химии «Алюминий: характеристика и свойства». Выберите дальнейшее действие:

Подгруппа Бора

По номеру, как говорится, и свойства! Группу «раздирают внутренние противоречия»! Мы это разберем подробно, но пока рассмотрим общие закономерности.

Электронное строение атомов

Электронное строение внешнего слоя у всех атомов этих элементов одинаково – на нем всего 2 электрона на s-орбитали 1 на p-орбитали:

n S 2 n p 1

подгруппа бора

Что это означает?

  1. Валентности элементов подгруппы бора = 3, т.е. каждый атом может образовывать 3 связи.
  2. Степени окисления элементов +3 – металлические свойства – это способность отдавать электроны
  3. Сверху вниз в подгруппе радиус атома увеличивается, следовательно, электроны все слабее притягиваются к ядру атома, следовательно, сверху вниз металлические свойства увеличиваются – Tl более сильный металл, чем B.
  4. Как следствие этого сверху вниз в подгруппе усиливаются восстановительные свойства

подгруппа бора

А вот теперь о » внутренних противоречиях»

  • Наличие p-орбитали уже вносит значительные изменения в химические свойства элементов. В отличие от металлов I группы и щелочноземельных металлов, где все элементы более или менее одинаковы, в подгруппу Бора закрался «предатель» — Бор — неметалл, по своим свойствам он больше похож на углерод С и кремний Si. Остальные элементы — металлы, хотя некоторые соединения алюминия проявляют амфотерные (т.е. и основные, и кислотные) свойства.
  • Tl в отличие от остальных собратьев чаще проявляет степень окисления +1. ( В ЕГЭ он встречается ОЧЕНЬ редко, но знать об этом на всякий случай следует)
  • Оксиды и гидроксиды: B2O3 — кислотный оксид, ему соответствует кислота H3BO3 (ее часто записывают как B(OH)3 — у этого соединения свойства амфотерные);
    Al2O3 ( и оксид Ga) — амфотерный оксид — может реагировать как с кислотами, так и с растворами щелочей;
    Оксиды In и Tl — типичные основные оксиды.
    Как видите, сверху вниз в подгруппе закономерно усиливаются металлические свойства (основные) и ослабевают неметаллические (кислотные) — периодичность налицо!

Физические свойства элементов подгруппы бора — B и Al:

Общие характеристики:

  • все металлы, кроме B — сероватого серебристого цвета; B — кристаллическое вещество, цвета: бесцветный, серый, красный…(различные аллотропные модификации)
  • достаточно твердые, ножом, как щелочные металлы, их , конечно, не порежешь Бор чуть менее твердый, чем алмаз
  • плотность больше 2,
  • B встречается в природе только в виде соединений; Al покрываются оксидной пленкой, остальные — достаточно устойчивы.
  • Электро- и теплопроводны

Химические свойства бора и алюминия

при н.у. покрывается оксидной пленкой, поэтому слабоактивный

  • с бескислородными кислотами бор не взаимодействует;
  • с кислотами-окислителями при нагревании образует борную кислоту: B → H3BO3

Обсуждение: «Подгруппа Бора»

+1+3-1
В NaBH4 Бор будет образовывать 4 связи с водородом (одна -донорно-акцепторная, как в аммиаке), при этом степень окисления будет равна +3

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector