Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Машиностроение и механика

Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

В ленточном конвейере движущая сила ленте передается с помощью фрикционной передачи (трением) при огибании ею приводного барабана или при контакте приводной ленты с грузонесущей.

Основными элементами привода ленточного конвейера являются один или два (реже три) приводных барабана и приводные блоки, состоящие из электродвигателя, редуктора, соединительных муфт и тормоза, обводные барабаны, пусковая и регулирующая аппаратура.

Приводы ленточного конвейера выполняются

однобарабанными с одним или двумя двигателями (рис. 3.10);

двухбарабанными с близко расположенными друг около друга приводными барабанами (рис. 3.11, а, 3.12) и с раздельным расположением приводных барабанов на переднем и заднем концах конвейера (рис. 3.12, 3.13);

трехбарабанными с близко расположенными друг около друга барабанами (рис. 3.11, б) или с раздельным расположением двух приводных барабанов на переднем и заднем концах конвейера.

clip_image028

Рис. 3.10. Схема однобарабанного привода

Наиболее надежным и конструктивно простым является однобарабанный привод, так как имеет небольшие габаритные размеры, простую конструкцию, один перегиб ленты, высокую надежность, но в связи с этим ограниченный (до 240º) угол обхвата лентой барабана и пониженный коэффициент использования прочности ленты.

clip_image030

Рис. 3.11. Приводы конвейеров с близко расположенными приводными барабанами:

а – двухбарабанный, б – трехбарабанный

clip_image032

Рис. 3.12. Схемы двухбарабанного привода:

а – с двумя двигателями, б – с тремя двигателями

clip_image034

Рис. 3.13. Расположение приводов на переднем и заднем концевых барабанах

Однобарабанный привод небольшой мощности (до 30–50 кВт) выполняют со встроенным внутрь барабана электродвигателем и редуктором. Такие мотор-барабаны широко используются в приводах передвижных и переносных конвейеров и питателей; они компактны, имеют небольшую массу. К преимуществам однобарабанного привода относятся простота конструкции, высокая надежность, небольшие габаритные размеры, единичный перегиб ленты; недостатками – ограниченный угол обхвата лентой приводного барабана и пониженный коэффициент использования прочности ленты.

Двухбарабанные приводы с близко расположенными приводными барабанами имеют различное конструктивное исполнение, наиболее распространенным из них является двухбарабанный привод с индивидуальными приводными механизмами. В этом исполнении барабаны связаны между собой только конвейерной лентой (без дополнительной кинематической связи). У двухбарабанного привода угол обхвата лентой приводного барабана увеличивается до 400º, что позволяет использовать ленту меньшей прочности и является его основным преимуществом. Двухбарабанный привод имеет большие габариты, чем однобарабанный, более сложную конструкцию и меньшую надежность; многократные перегибы ленты снижают ее долговечность – это его основные недостатки. Трехбарабанные приводы применяются в конвейерах большой протяженности.

По общей теории фрикционного однобарабанного привода соотношение между натяжениями ветвей ленты Sнб и Sсб при отсутствии скольжения [2]

где μ – коэффициент трения ленты о поверхность барабана;

α – угол обхвата лентой барабана, рад.

Величину ℮ μα , определяющую тяговую способность барабана, называют тяговым фактором.

Тяговое усилие барабана без учета потерь из-за жесткости ленты

Тяговое усилие барабана возрастает с увеличением угла обхвата, коэффициента трения и первоначального натяжения ленты. Для увеличения коэффициента трения поверхность барабана футеруют фрикционными материалами с насечками в виде прямоугольников или ромбов глубиной 3–4 мм.

Расчетное натяжение сбегающей ветви ленты

Расчетное натяжение набегающей ветви ленты

где Kз = 1,1–1,2 – коэффициент запаса сцепления ленты с барабаном;

W – тяговое усилие, равное общему сопротивлению движения ленты, определяемое тяговым расчетом, Н.

Мощность приводного двигателя

где v – скорость движения ленты конвейера , м/с;

η – общий кпд механизма привода (обычно η = 0,8–0,9).

В двухбарабанном приводе

где Sнб1 – натяжение ветви ленты, набегающей на первый по ходу ленты барабан, Н;

Sсб2 – натяжение ветви ленты, сбегающей со второго приводного барабана, Н;

μ1 и μ2 – коэффициенты трения ленты о поверхность первого и второго барабанов;

α1 и α2 – углы обхвата лентой первого и второго барабанов, рад.

Общая мощность двигателей двухбарабанного привода [2]

где Kф = N / N – коэффициент соотношения мощностей на первом и втором барабанах;

N и N – принятые по каталогу мощности электродвигателей.

Обычно принимают Kф = 1– 3, чаще Kф = 2, тогда на первом барабане устанавливают два одинаковых приводных механизма и электродвигателя, а на втором – один такой же комплект.

Общее суммарное тяговое усилие распределяется на два окружных усилия, создаваемых первым и вторым барабаном [2]

Выбор места расположения и типа привода (рис. 3.14, 3.15) зависит от протяженности и профиля трассы конвейера, значения коэффициента трения между лентой и поверхностью приводного барабана µ и коэффициента использования прочности ленты [5].

Читайте так же:
Гильотинные ножницы для резки листового металла характеристики

clip_image036

Рис. 3.14. Схема к определению места расположения привода ленточного конвейера

Узлы ленточного конвейера общего назначения

Барабан приводной для конвейера входит в число основных узлов и отвечает за движение ленты. Барабан связан специальным передаточным механизмом с мотором-редуктором, при помощи которого происходит передача тягового усиления. Мотор вращает барабан и это приводит ленту конвейера в движение.

Приводной барабан состоит из трубы, изготовленной в форме цилиндра и полнотелого вала, который с двух сторон имеет посадочные зоны для подшипниковых узлов. Состыковка конструкции барабана с редуктором обеспечивается шпоночным соединением с помощью муфты. Чтобы лента беспрепятственно перемещалась и не соскальзывала, поле барабана делают немного шире транспортерной ленты. Материал, из которого изготовлены изделия — сталь, которая обеспечивает хорошую переносимость оборудованием любых нагрузок.

Поставляются с одной консолью вала для соединения с приводным механизмом или с двумя консольными для соединения с двумя приводными механизмами, расположенными симметрично относительно оси конвейера. Изготавливаются более восьмидесяти типоразмеров.

Привод ленточного конвейера

Приводная станция ленточного конвейера состоит из приводного барабана, тихоходной муфты и приводного механизма, который комплектуется редуктором, двигателем, быстроходной муфтой и рамой.

Приводные станции комплектуются одним или двумя приводными механизмами, состоящими из редукторов, электродвигателей, муфт и тормозов типа ТКГ. Приводные станции изготовляются левого и правого расположения.

Муфты зубчатые МЗ и МЗП применяются для непрерывного соединения соосных валов, а также муфты компенсируют их небольшие радиальные либо угловые смещения.

Муфта упругая втулочно-пальцевая (МУВП) служит для компенсации динамических нагрузок. Муфта МУВП состоит из двух полумуфт, которые неподвижно закреплёны в одной полумуфте пальцев, на которых размещены резиновые втулки. Через втулки пальцы взаимодействуют с другой полумуфтой.

Муфта МУВП с тормозным шкивом соединеняет соосные валы при передаче крутящего момента. Резиновые кольца обеспечивают снижение динамической нагрузки и позволяют запускать и останавливать механизмы без динамического рывка.

Муфты тихоходные кулачково-дисковые предназначены для соединения валов при передаче крутящего момента. Отсутствие упругого элемента не допускает перекос валов. Кулачково-дисковые муфты редуктора подходят для компенсации параллельного смещения валов.

Устройства натяжные

Натяжные устройства конвейеров обеспечивают постоянное натяжение ленты на приводном барабане. Это исключает её проскальзывание и создает между барабаном и лентой трение, которого достаточно для передачи необходимого тягового усилия. Натяжные устройства также ограничивают провисание ленты между роликопорами и компенсируют её удлинение, которое происходит за счёт вытягивания ленты под нагрузкой в процессе эксплуатации. В большинстве случаев натяжное устройство на конвейерах топливоподачи устанавливается в хвостовой части конвейера.

Ленточные конвейеры снабщаются натяжными устройствами двух типов: винтовые и грузовые. Тип натяжного устройства и длина его хода определяются упругими свойствами ленты и длиной конвейера.

Правильный выбор длины хода натяжного барабана в значительной мере обеспечивает нормальную эксплуатацию конвейера и его долговечность.

Предлагаем к поставке устройства натяжные винтовые, тележки натяжные, рамы натяжные, устройства натяжные грузовые, грузолебедочные грузовые устройства, бадьевые грузовые устройства, обоймы блочные.

Барабаны неприводные

Барабан неприводной конвейерный является комплектующей частью ленточного транспортера. Его предназначение — натяжение ленты и увеличение ее коэффициента сцепления. Барабан не дает ленте пробуксовываться по ходу движения, что способствует более эффективной работе конвейерной линии. В транспортерах горизонтально-наклонного типа неприводные барабаны используются для изменения направления движения ленты. Оборудование может быть установлено в разных местах конвейерной линии: в точках максимальной нагрузки, на изгибе и т.д.

Неприводные барабаны могут быть изготовлены без футеровки со встроенными или выносными подшипниками.

Роликоопоры

Роликовая опора — это удерживающая конструкция ленточного конвейера. Она обеспечивает надежное крепление роликам. Роликоопора конвейера поддерживает ленту, центрируя ее верхнюю и нижнюю часть, а также защищая ее от провисания. Существуют роликовые опоры разных видов: верхние и нижние, прямые и желобчатые, центрирующие, регулируемые.

АО «Горные машины» предлагает к поставке роликоопоры конвейера следующих разновидностей: желобчатые верхние, верхние подвесные, верхние амортизирующие, верхние центрирующие, верхние плоские, нижние плоские.

Ролики

Конвейерные ролики являются сборочной единицей ленточного транспортера или рольганга. Бывают разных видов и в зависимости от вида выполняют различные функции: обеспечивают непрерывное движение конвейерной ленты, амортизируют удары при загрузке конвейера, формируют движущуюся поверхность рольганга.

Мы предлагаем большой ассортимент различных видов роликов конвейерных транспортерных: поддерживающие с выносными подшипниками, гладкие с войлочным уплотнением, гладкие с комбинированным уплотнением, гладкие со сложным уплотнением, гладкие с лабиринтным фенопластовым уплотнением, гладкие с лабиринтным уплотнением, кольца резиновые для футеровки роликов.

Читайте так же:
Как найти мощность при параллельном соединении

Очистители ленты

Очистители для ленточных конвейеров сохраняют чистоту лент, исключают сползание материала и повышают безопасность и производительность конвейеров. Мы предлагаем очистители для лент любых размеров и скоростей, а также ленточные очистители для самых сложных условий (к примеру, для конвейеров с очень маленьким пространством вокруг головного барабана.

Мы предлагаем к поставке очистители приводных барабанов, очистители неприводных барабанов, очистители барабанов винтовых натяжных устройств, скребок для очистки ленты.

Привод ленточного конвейера — чертежи, расчет

Привод ленточного конвейера - чертежи, расчет

В данном курсовом проекте разработан привод ленточного конвейера: разработан сборочный чертеж ведущего вала, подобран двигатель, редуктор и муфта. Редуктор состоит из литого чугунного корпуса, в котором помещены элементы передачи. Входной вал посредством ременной передачи соединяется с двигателем, выходной посредством шлицевого соединения с конвейером.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи мощности от двигателя к рабочей машине. Назначение редуктора – понижение угловой скорости и повышение вращающего момента ведомого вала по сравнению с валом ведущим.

В качестве двигателя у большинства конвейеров используется стандартный электромотор трехфазного тока. Передаточный механизм в зависимости от задания на курсовой проект может содержать открытую передачу и редуктор или один редуктор.

Исполнительным механизмом (ИМ) в данном проекте является приводной вал конвейера. Для ленточного конвейера — это вал приводного барабана, а для цепного конвейера — вал с одной или двумя приводными звездочками. Согласно полученному заданию спроектирован привод конвейера, т.е. произведены расчеты и разработаны чертежи в объеме, установленном заданием на курсовой проект. Все необходимые расчеты и пояснения особенностей конструкции и эксплуатации привода оформлены в виде пояснительной записки.

Задание на курсовой проект

Спроектировать привод ленточного конвейера , состоящий из асинхронного двигателя(1),клиноременной передачи(4),подвесного одноступенчатого редуктора(3) с реактивной тягой(5),а также приводной вал с барабаном(2).

Выбор смазки редуктора и подшипников

Для уменьшения потерь мощности на трение, снижения интенсивности изнашивания трущихся поверхностей, их охлаждения и очистки от продуктов износа, а также для предохранения от заедания, задиров, коррозии должно быть обеспечено надежное смазывание поверхностей.

В машиностроении для смазывания зубчатых передач широко применяют так называемую картерную систему, т.е. погружение движущегося колеса в масляную ванну с жидкой смазкой по ГОСТ 2079975. Смазка должна быть жидкой, чтобы обеспечилось её разбрызгивание в корпусе и образование там масляного тумана, который необходим для непрерывного смазывания всех трущихся частей механической передачи.

Выбор смазочного материала основан на опыте эксплуатации машин.

Принцип назначения сорта масла: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла и чем выше контактные напряжения в зацеплении, тем большей вязкостью должно характеризоваться масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес.

При окружной скорости до 2 м/с и контактных напряжениях σН =6001000 МПа рекомендуемая кинематическая вязкость масла 60 мм²/с. Для редуктора принимаем масло И-Г-А-68 по ГОСТ 2079988.

Подшипники в рассматриваемом варианте оформления опор валов цилиндрических редукторов смазываем пластичным смазочным материалом, закладываемым при сборке узла. Это обусловлено тем, что в рассматриваемом случае величина окружной скорости колес (V < 3 м/с) не позволяет надежно смазывать эти подшипники конденсатом масляного тумана, образующегося при разбрызгивании масла из масляной ванны картера, погруженными в нее колесами редуктора.

Пластичные (мазеобразные) смазочные материалы представляют собой загущенные специальными загустителями жидкие масла с включением различных присадок.

Основными пластичными смазочными материалами, применяемыми в подшипниковых узлах редукторов общего назначения, в настоящее время являются Литол–24 ТУ 2115075 (для работы в температурном интервале – 40…+130С) и ЦИАТИМ–201 ГОСТ 626774 (–60…+90С).

Применим в нашем случае Литол–24 ТУ 2115075.

10.Выбор муфты

Муфты предназначены для продольного соединения вращающихся валов и передачи вращающего момента (для некоторых муфт возможно также выполнение ряда дополнительных функций, например, компенсация осевых, радиальных или угловых смещений).

Основные показатели при выборе муфты: номинальные диаметры соединяемых валов, расчетный вращающий момент, частота вращения и условия эксплуатации.

На практике для определения расчетного вращающего момента Тр пользуются формулой:

где Кр — коэффициент перегрузки, учитывающий режим работы и ответственность конструкции, Т- вращающий момент на соответствующем валу, Тном — номинальный вращающий момент, указанный в каталоге.

Читайте так же:
Какие лампы можно использовать с диммером

Принимаются значения Кр для транспортеров ленточных – 1.25. 1.5, транспортеров цепных, винтовых, скребковых – 1.5. 2.0; воздуходувок и вентиляторов – 1.25. 1.5; насосов центробежных – 1.5. 2.0; насосов и компрессоров поршневых – 2.0. 3.0; станков металлорежущих: с непрерывным движением 125.. 1.5, с возвратно-поступательным движением – 1.5. 2.5; станков деревообделочных – 1.5. 2.0; мельниц шаровых, дробилок, молотов, ножниц 2.0. 3.0; кранов подъемных, элеваторов – 3.0. 4.0.

Для соединения выходных концов двигателя и быстроходного вала редуктора (располагаемых обычно на общей раме) применяются упругие втулочнопальцевые муфты и муфты со звездочкой. У них небольшие размеры и масса, хорошие упругие свойства и минимальный маховый момент, что уменьшает пусковые нагрузки на соединяемые валы.

Для соединения выходных концов тихоходного вала редуктора приводного вала применяются цепные муфты и муфты с торообразной оболочкой. Эти муфты способны компенсировать значительную несоосность валов. Величина муфты не имеет здесь практического значения, т. к. приведенный к валу двигателя маховый момент уменьшается в равное квадрату передаточного отношения число раз. Стандартные муфты выпускаются двух типов: с цилиндрическими и коническими посадочными отверстиями (кроме муфты со звёздочкой, у нее только цилиндрическое посадочное отверстие), причем каждый тип имеет два исполнения — для длинных и коротких концов валов. Возможно использование полумуфт с различными диаметрами посадочных отверстий при передаче одного и того же вращающего момента.

11.Подбор посадок основных деталей редуктора

Выбор посадок на вал внутренних колец подшипников качения производим, в соответствии с ГОСТ 3325 85, в зависимости от класса точности подшипников, режимов их работы и вида нагружения колец подшипника.

Подшипники работают в режиме небольших нагрузок (работа с умеренными толчками) или средние нагрузки в условиях необходимости частого перемонтажа. При вращении вала внутреннее кольцо подшипника качения (при неподвижном наружном) подвергается циркуляционному нагружению. В этом случае его на вал устанавливают с натягом, т.к. при установке циркуляционного нагруженного кольца с зазором происходит неизбежное проскальзование такого кольца по валу, приводящее к обмятию и изнашиванию контактирующих поверхностей. В зависимости от режима работы и класса точности подшипника выбираем посадку на вал внутренних колец подшипников качения k6.

При умеренной нагруженности (кр 15 МПа) и нереверсивной работе применяют посадки: H6 / k5; H7 / k6; H8 / k7.

Поле допуска на ширину «b» шпоночного паза в вале, предназначенного под призматическую шпонку, выбирают по ГОСТ 23360 – 78 в зависимости от характера шпоночного соединения и вида передаваемой им нагрузки. Для неподвижного соединения шпонки с валом при постоянном нагружении поле допуска на ширину паза вала назначают по N9.

Крышки подшипников быстроходного и тихоходного узла устанавливаются по посадке H7.

12. Сборка редуктора

Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрыв передвижную поверхность стыка крышки и корпуса стыковым маслом.

На ведомом валу устанавливают шпонку, надевают зубчатое колесо, в подшипниковые камеры укладывают смазку, ставят крышки подшипников.

На ведущем валу устанавливают шпонку.

Ввёртывают пробку маслоспускного отверстия с прокладкой и маслоуказатель, заливают в корпус масло, устанавливают крышку и закручивают болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде.

13. Сборка привода

Сборку привода ленточного транспортёра рекомендуется производить следующим образом:

1. Приводной вал (1) устанавливается на раму и крепится к ней с помощью болтов.

2. На входной конец приводного вала (1) насаживается редуктор (2).

3.Электродвигатель (8) крепится к плите с натяжным устройством(4) болтами.

4.Ведущий шкив клиноременной передачи (6) надевается на выходной вал электродвигателя (8).

Ведомый шкив(7) крепится на быстроходном валу редуктора (2).

5. Редуктор (2) устанавливается в рабочее положение с помощью реактивной тяги (5), которая обеспечивает устойчивость конструкции.

Привод ленточного конвейера

Вариант представляет схему традиционной компоновки конвейеров для перемещения, например, рулонов ткани, подвесного конвейера для перемещения готового платья и т.д..

Современная компоновка приводов бытовых приборов, машин и аппаратов основана на принципах компактности. Например, двигатель ручного электросверла встроен в корпус, привод компрессора холодильника встроен вместе с компрессором в полностью изолированный корпус. Широко распространены мотор-редукторы безмуфтового исполнения.

Мой вариант содержит наиболее распространенные узлы и элементы, расчет и компоновка которых позволяют развить начальные навыки проектирования. Согласно заданию необходимо освоить процесс расчета, конструирования, компоновки и сборки основного узла – промежуточного вала в сборе с шестернями, подшипниками, элементами регулирования; в таком узле сконцентрированы основные элементы зубчатых передач, наиболее распространенных в приводах объектов машиностроения, в частности, бытовых машин, приборов и аппаратов.

Читайте так же:
Как прозвонить телефонный кабель тестером

— частота вращения выходного вала редуктора;

— требуемая мощность привода (на выходе);

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата, и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи.

Назначение редуктора — понижение угловой скорости и, соответственно, повышение вращающего момента ведомого вала по сравнению с ведущим.

Редукторы классифицируют по следующим признакам: типу передачи, (зубчатые, червячные или зубчато-червячные), числу ступеней (одноступенчатые, двухступенчатые), типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические), относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные), особенностями кинематической схемы (развернутая, соосная, с раздвоенной ступенью).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.

Выполнение курсовой работы способствует закреплению и углублению знаний и умений, полученных при изучении дисциплины «Основы функционирования систем сервиса».

Работа позволяет получить следующие навыки:

применение на практике приемов расчета и конструирования;

составления кинематических схем, описания устройства и принципа действия проектируемого объекта;

обоснования и разработки технических решений и расчетов элементов конструкций;

работы со специальной технической литературой;

анализа технических параметров и технико-экономического анализа проектируемого изделия.

1. Кинематические расчеты

Кинематическая схема привода

1. Электродвигатель (мотор)

2. Муфта упругая

3. Вал быстроходный

4. Вал-шестерня быстроходной ступени

5. Корпус редуктора

6. Подшипниковый узел с глухой крышкой

7. Зубчатое колесо быстроходной ступени

8. Вал-шестерня тихоходной ступени

9. Вал-шестерня промежуточный

10. Зубчатое колесо тихоходной ступени

11. Барабан приводной ленточного конвейера

12. Вал приводного барабана

13. Опора подшипниковая приводного барабана

14. Лента конвейера

15. Муфта упругая

16. Подшипниковый узел со сквозной крышкой с уплотнением

17. Вал тихоходный

Проектируемый редуктор служит для передачи вращения и изменяющегося крутящего момента от электродвигателя к исполнительному механизму – приводному барабану ленточного конвейера. Проследим передачу момента. От электродвигателя 1 посредством муфты 2 крутящий момент передается на быстроходный вал 3, установленный в корпусе 5 на подшипниках 6. Быстроходный вал имеет зубчатый венец 4 (шестерня), которая зацепляется с зубчатым колесом 7, установленным посредством шпоночного соединения с промежуточным валом 9, установленным также на подшипниках качения. На промежуточном валу имеется также зубчатый венец 8 (промежуточный вал может быть выполнен в виде вал-шестерни), которое зацепляется с зубчатым колесом 10, установленным посредством шпоночного соединения на тихоходном валу 17, установленном также в корпусе редуктора на подшипниках качения. Выходной конец тихоходного вала 17 посредством шпоночного соединения и муфты 15 соединен с приводным валом 12 барабана 11 ленточного конвейера с лентой 14.

Условно называют зубчатую передачу 4-7 быстроходной ступенью и зубчатую передачу 8-10 тихоходной ступенью редуктора. Итак, крутящий момент передается: с вала электродвигателя на быстроходную ступень 4-7, далее на промежуточном валу на участке 7-8 на тихоходную ступень 8-10, далее на муфту 15 и на вал приводного барабана 16. Число оборотов электродвигателя в данной системе максимально. Число оборотов промежуточного вала в раз меньше; число оборотов тихоходного вала в раз меньше. Момент на валу электродвигателя в данной системе минимальный, а на выходном валу – максимальный, с учетом небольших потерь в подшипниках, зубчатых передачах и муфтах. Можно сказать, что момент возрастает в раз.

1.2 Выбор электродвигателя

Для выбора электродвигателя определяют требуемую его мощность и частоту вращения.

Потребляемую мощность (кВт) привода (мощность на выходе) определяют по формуле:

где — общее КПД звеньев кинематической цепи:

по таблице 1.1 находим значения КПД отдельных звеньев кинематической цепи:

Тогда требуемая мощность электродвигателя:

По таблице 24.9 выбираем стандартный электродвигатель АИР132М4 мощностью кВт с синхронной частотой вращения об/мин.

1.3 Уточнение передаточных чисел привода

Общее передаточное число привода находим по формуле:

Полученное передаточное число распределяем между первой и второй ступенями редуктора по формулам:

1.4 Определение вращающих моментов на валах привода

Частота вращения быстроходного вала:

Частота вращения промежуточного вала:

Частота вращения тихоходного вала:

Вращающий момент электродвигателя определяется по формуле:

Читайте так же:
Как сделать металлоискатель своими руками в домашних

Вращающие моменты соответственно на быстроходном, промежуточном и тихоходном валах определяются по формулам:

Подставляя имеющиеся значения в указанные формулы получим:

2. Выбор материала и расчет допускаемых напряжений

2.1 Выбор твердости, термической обработки и материала колес

Передачи со стальными зубчатыми колесами имеют минимальную массу и габариты, тем меньшие, чем выше твердость рабочих поверхностей зубьев, которая, в свою очередь, зависит от марки стали и варианта термической обработки. По таблице 2.1 для шестерни и зубчатого колеса выбрана сталь марки 40Х. Термическая обработка зубчатого колеса – улучшение, твердость 235…262НВ, МПа; термическая обработка шестерни – улучшение, твердость 269…302НВ, МПа. Зубья колес из улучшаемых сталей хорошо прирабатываются и не подвержены хрупкому разрушению.

2.2 Допускаемые контактные напряжения

Допускаемые контактные напряжения для шестерни и зубчатого колеса определяют по формуле:

Предел контактной выносливости вычисляют по формуле:

Коэффициент запаса прочности для зубчатых колес с однородной структурой материала .

Коэффициент долговечности Z N учитывает влияние ресурса:

Число циклов, соответствующее перелому кривой усталости, определяется по средней твердости поверхностей зубьев:

Ресурс передачи в числах циклов перемены напряжений при частоте вращения , об/мин, и времени работы , час, находится по формуле:

где – число вхождений в зацепление зуба рассчитываемого колеса за один его оборот.

при расчете первой ступени редуктора:

при расчете второй ступени редуктора:

В соответствии с кривой усталости напряжения не могут иметь значений меньших . Поэтому, поскольку в обоих случаях , принимаем . Следовательно, коэффициент долговечности .

Коэффициент , учитывающий влияние шероховатости сопряженных поверхностей зубьев, принимаем .

Коэффициент , учитывающий влияние окружной скорости, принимаем , поскольку это значение соответствует твердым передачам, работающим на малых окружных скоростях.

Поскольку допускаемые контактные напряжения для цилиндрических передач с прямыми зубьями не могут превышать меньшего из допускаемых контактных напряжений шестерни и колеса , то МПа.

2.3 Допускаемые напряжения изгиба

Допускаемые напряжения изгиба зубьев шестерни и колеса определяют по общей зависимости, учитывая влияние на сопротивление усталости при изгибе долговечности, шероховатости поверхности выкружки и реверса, используя приведенную ниже формулу:

Предел выносливости при отнулевом цикле вычисляют по следующей формуле:

Коэффициент запаса прочности .

Для длительно работающих быстроходных передач принимают , поэтому .

Коэффициент , учитывающий влияние шероховатости переходной поверхности между зубьями, принимаем , поскольку это значение соответствует шлифованию и зубофрезерованию с параметром шероховатости мкм.

Коэффициент YA , учитывает влияние двустороннего приложения нагрузки (реверса). , поскольку приложение нагрузки одностороннее (без реверса).

Поскольку допускаемые напряжения изгиба для цилиндрических передач с прямыми зубьями не могут превышать меньшего из допускаемых напряжений изгиба шестерни и колеса , то МПа.

2.4 Учет режима нагружения при определении допускаемых напряжений

Режим нагружения редуктора средний нормальный, т.е. работа большую часть времени со средними нагрузками.

В расчетах на контактную выносливость переменность режима нагружений учитывают при определении коэффициента долговечности : вместо назначенного ресурса подставляют эквивалентное число циклов :

где – коэффициент эквивалентности ( по табл. 2.4).

при расчете первой ступени редуктора: ;

при расчете второй ступени редуктора: .

Поскольку в обоих случаях , то принимаем .

В расчетах на выносливость при изгибе для определения коэффициента долговечности вместо подставляют эквивалентное число циклов :

где – коэффициент эквивалентности (по табл. 2.4).

при расчете первой ступени редуктора:

при расчете второй ступени редуктора:

Поскольку , то принимаем .

3. Расчет зубчатой передачи первой ступени

3.1 Межосевое расстояние

Предварительное значение межосевого расстояния находим по формуле:

где – коэффициент, зависящий от поверхностной твердости зубьев.

в соответствии с рядом стандартных размеров (по ГОСТ 6636-69, табл. 24.1) принимаем мм.

Окружную скорость , м/с, вычисляют по формуле:

Степень точности (по ГОСТ 1643-81, табл. 2.5) принимаем .

Окончательное значение межосевого расстояния:

– коэффициент нагрузки в расчетах на контактную прочность, вычисляется по формуле:

Коэффициент учитывает внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления и погрешностями профилей зубьев шестерни и колеса. Значение (по табл. 2.6).

Коэффициент учитывает неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления и упругими деформациями валов, подшипников. Зубья зубчатых колес могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становится более равномерным. Поэтому рассматривают коэффициенты неравномерности распределения нагрузки в начальный период работы и после приработки . Значение коэффициента принимают по табл. 2.7 в зависимости от коэффициента , схемы передачи и твердости зубьев.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector