Tehnik-ast.ru

Электро Техник
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Практическая работа по теме; Зубчатые редукторы

Практическая работа по теме: "Зубчатые редукторы"

Нажмите, чтобы узнать подробности

Редуктором называют механизм, выполненный в виде отдельного агрегата, служащий для передачи мощности от двигателя к рабочей машине с соответствующим понижением угловых скоростей и повышением крутящего момента от входного к выходному валу.

Редуктор состоит из зубчатых или червячных передач, установлен­ных в отдельном герметичном корпусе, что принципиально отличает его от зубчатой или червячной передачи, встроенной в исполнитель­ный механизм или машину. Редукторы широко применяют в приводах различных рабочих ма­шин в разных отраслях машиностроения, поэтому число разновидно­стей их велико (рис. 19.1, а — м).

Широко применяют мотор-редукторы, представляющие собой объединенные в одно целое фланцевый высокоскорост­ной электродвигатель и редуктор, служащий для повышения вращающего момента. Мотор-редукторы экономичнее и имеют более высокие КПД и пусковой момент, чем обычные тихоходные высокомоментные электродвигатели.

Рис. 19.1. Кинематические схемы редукторов:

Б — быстроходный вал; Т— тихоходный вал

Классификация редукторов

Редукторы широко применяют в различных отраслях машиностроения и поэтому они весьма разнообразны по своим кинематическим схемам и конструктивному исполнению.

по типу передачи:

по числу ступеней:

— трехступенчатые и т. д.

по расположению валов и зубчатых колес:

Зубчатые редукторы в зависимости от расположения осей колес бывают:

Зубчатые редукторы в зависимости от расположения зубьев бывают:

— с круговыми зубьями

Вид и конструкция редуктора определяются типом, расположением и количеством отдельных передач (ступеней).

Обзор основных типов редукторов

Зубчатые редукторы.

Цилиндрические зубчатые редукторы благодаря широкому диапазону передаваемых мощностей, долговечности, простоте изготовления и обслуживания имеют широкое распространение в машиностроении.

Одноступенчатые редукторы (см. рис. 19.1, я и 19.3) при­меняют при передаточных числах uкосозубое.

Двухступенчатые редукторы выполняют по развернутой (см. рис. 19.1, б и в), раздвоенной (см. рис. 19.1, г) и соосной (см. рис. 19.1, д) схемам. Диапазон и = 6,3. 50.

Наиболее распространены цилиндрические двухступенчатые горизон­тальные редукторы (см. рис. 19.1,6), выполненные по развернутой схеме. Они конструктивно просты, технологичны, имеют малую ширину. Недостатком этих редукторов является неравномерность рас­пределения нагрузки по длине зуба из-за несимметричного расположе­ния колес относительно опор.

Для улучшения условий работы зубчатых колес наиболее нагружен­ной тихоходной ступени применяют редукторы с раздвоенной быстро­ходной ступенью (см. рис. 19.1, г). Для равномерной нагрузки обеих зубчатых пар быстроходной ступени их выполняют косозубыми (зубчатое колесо одной пары — с правым, другой — с левым зубом), а один из валов делают «плавающим», что обеспечивает самоустановку вала в осевом направлении. Такие редукторы легче редукторов по раз­вернутой схеме (на 20 %).

Соосные редукторы (см. рис. 19.1, д) имеют меньшую длину корпуса. Они проще по конструкции, легче и менее трудоемки в из­готовлении.

Цилиндрические трехступенчатые редукторы выполняют по раз­вернутой или раздвоенной схеме при и = 31,5. 250.

Конические редукторы (см. рис. 19.1, ё) выполняют с круго­выми зубьями при передаточном числе иКоническо-цилиндрнческие редукторы (см. рис. 19.1, ж) независимо от числа ступеней выпол­няют с быстроходной конической ступенью.

Червячные редукторы чаще всего применяют в одноступенчатом исполнении (см. рис. 19.1, и —л) с передаточным числом u = 8. 63. Для приводов тихоходных машин применяют червячно-зубчатые (см. рис. 19.1 з, м) двухступенчатые редукторы.

Планетарные редукторы позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее редукторов, описанных ранее. Широко применяют планетарные мо­тор-редукторы.

Волновые редукторы имеют наименьшие удельную массу и погреш­ность угла поворота выходного вала, при наименьших габаритах позво­ляют получить большое передаточное число (и = 80. 300).

Тип редуктора, основные параметры и конструкцию выбирают в за­висимости от его места в силовой цепи привода машины, передава­емого момента и частоты вращения, назначения машины и условий эксплуатации. На практике используют стандартные редукторы, изго­товляемые на специализированных заводах.

Цилиндрические редукторы следует предпочитать другим ввиду более высоких значений КПД. При больших передаточных числах применяют планетарные, червячные и волновые редукторы.

Читайте так же:
Какое постоянное напряжение приблизительно покажут оба вольтметра

Корпуса (картеры) редукторов должны быть прочными и жесткими. Внешние очертания формируют плоскостями с внутренним располо­жением бобышек, фланцев и ребер. Корпуса отливают из серого чугуна, реже из алюминиевых сплавов. Для удобства сборки корпуса редук­торов выполняют разъемными по плоскости расположения осей валов

Опорами валов редукторов служат подшипники качения.

Смазывание зубчатых или червячных передач редукторов применя­ют в целях уменьшения изнашивания, отвода тепла и продуктов из­носа от контактирующих поверхностей, защиты от коррозии и сниже­ния шума и вибраций. В большинстве случаев смазывание зацепления осуществляют погружением колес или червяков в масляную ванну, а под­шипников—разбрызгиванием (масляным туманом) или консистентной смазкой.

В корпус редуктора заливают масло из расчета 0,4 — 0,7 л на 1 кВт передаваемой мощности, при этом колесо или червяк должны погружаться в масло на глубину не менее, чем высота зуба или витка. Допускается погружать в масляную ванну тихоходные колеса многоступенчатых редукторов на глубину до 1/3 радиуса колеса

При окружной скорости колеса свыше 1 м/с происходит интенсив­ное разбрызгивание масла внутри корпуса и образование масляного тумана, обеспечивающего смазывание всех других зацеплений и под­шипников качения.

Во избежание больших гидравлических потерь и сбрасывания масла с зубьев центробежной силой окружная скорость погружаемой детали не должна превышать 12,5 м/с.

Сорт масла назначают в зависимости от условий и режима работы. Вязкость масла должна быть тем выше, чем больше значения контакт­ных напряжений и меньше значение окружной скорости.

В процессе эксплуатации смазочные масла постепенно теряют свои свойства. Периодичность замены масла устанавливают в зависимости от условий работы.

Конструкция редуктора

Выполнение работы:

Изучить теоретические сведения.

Пройти по предложенным ссылкам, посмотреть, как производится сборка-разборка различных типов редукторов.

Зарисовать кинематические схемы данных редукторов.

Для вариантов с 1 по 10 схемы редукторов в ссылках 1 и 5

Для вариантов с 11 по 20 ссылки 2 и 3

С 21 варианта ссылки 3 и 4

Подписать схемы, указав полное название редуктора

На схемах указать основные элементы редуктора

Содержание отчета

Основные теоретические сведения

Кинематические схемы редукторов, рассмотренных в видеофрагментах с указанием полного названия редуктора и основных его элементах

Кинематическая схема конического редуктора

Конические передачи (рис. 9.9) передают вращающий момент между валами, оси которых пересекаются. Будем рассматривать передачи с межосевым углом 90°; эти передачи называют ортогональными. Наибольшее распространение получили передачи с прямыми (рис. 9.9, б) и круговыми (рис. 9.9, в) зубьями.

Углы делительных конусов обозначают для шестерни и для колеса 62.

Рис. 9.9. (см. скан) Коническое зубчатое зацепление при а — основные параметры и схема передачи: 1 — внешний делительный конус; 2 — внешний делительный дополнительный конус; б — прямые зубья; в — косые зубья

Коническая поверхность, образующие которой соответственно перпендикулярны к образующим делительного конуса, называется делительным дополнительным конусом (рис. 9.9, а).

Конусы I и 2 пересекаются по окружности, которую называют делительной окружностью. Диаметры и соответственно являются диаметрами внешней и средней делительных окружностей. Шаги на этих окружностях называются соответственно внешним и средним окружными шагами; их отношение к — внешним (или те для прямозубых передач) и средним модулями.

Рис. 9.10. Схема для определения эквивалентного числа зубьев — эквивалентное колесо; 2 — дополнительный конус

В прямозубых передачах расчет обычно ведут по внешнему окружному модулю те а в передачах с круговым зубом — по среднему нормальному модулю , где и называются соответственно средним и внешним делительными конусными расстояниями (см. рис. 9.9, а); — угол наклона кругового зуба в середине ширины зубчатого венца. Обычно принимают .

Отношение ширины зубчатого венца к внешнему делительному конусному расстоянию называется коэффициентом ширины зубчатого венца:

Сечение делительного конуса делительным дополнительным конусом образует торцевое сечение, в котором профиль зубьев конических передач близок к эвольвентному. Поэтому при расчетах конических колес используют параметры эвольвентных цилиндрических прямозубых передач с эквивалентным числом зубьев (рис. 9.10).

Диаметр делительной окружности эквивалентного колеса (см. треугольник и развертку дополнительного конуса)

Читайте так же:
Ip rating что это

Эквивалентное число зубьев

где — действительное число зубьев конического колеса. Для шестерни рекомендуют принимать

При расчете конических колес с круговыми зубьями их приходится заменять эквивалентными колесами дважды, т. е. иметь дело с биэквивалентными цилиндрическими прямозубыми колесами: во-первых, конические колеса приводятся к эквивалентным цилиндрическим и, во-вторых, круговые зубья приводятся к эквивалентным прямым.

Число зубьев биэквивалентного колеса

где число круговых зубьев на коническом колесе.

Основные геометрические характеристики конических колес в ортогональных передачах приведены в табл. 9.15.

Основные параметры конических редукторов даны в ГОСТ 12289-76 (см. табл. 9.4, 9.5 и рис. 9.9).

В справочном пособии не рассматриваются конические передачи с тангенциальными зубьями, так как область их применения сужается за счет передач с круговыми зубьями. Последние менее чувствительны к погрешностям изготовления и монтажа и имеют повышенную несущую способность.

Редукторы: Назначение, виды, кинематические схемы, составные части и детали

Редукторы — продукция материально-технического назначения. Эти механизмы служат для изменения скорости вращения при передачи вращательного движения от одного вала к другому.
По типу передачи они делятся на зубчатые, червячные и гидравлические.

Файлы: 1 файл

к.р строит.маш.docx

Министерство образования и науки российской федерации

РЯЗАНСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Государственного образовательного учреждения

Высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ»

Кафедра промышленного и гражданского строительства

по дисциплине: «Строительные машины»

Работу выполнил студент:

МиЭП факультета 4 курса

  1. Редукторы: Назначение, виды, кинематические схемы, составные части и детали.

Редукторы — продукция материально-технического назначения. Эти механизмы служат для изменения скорости вращения при передачи вращательного движения от одного вала к другому.

По типу передачи они делятся на зубчатые, червячные и гидравлические.

Мотор редуктор — представляет собой электродвигатель и редуктор, соединенные в единый агрегат (в некоторых странах его называют редукторным электродвигателем). Мотор-редуктор более компактен по сравнению с приводом на базе редуктора, его монтаж значительно проще, кроме того, уменьшается материалоемкость фундаментной рамы, а для механизма с насадным исполнением (с полым валом) не требуется никаких рамных конструкций. Большое количество конструкционных решений и типоразмеров дает возможность оснащения предприятий прецизионными редукторами приводов различных назначений, размеров и мощностей. Мотор редуктор, как универсальный элементы электропривода, находят свое применение практически во всех областях промышленности.

Наибольшее распространение в промышленности получили планетарные и цилиндрические мотор-редукторы, выполненные по соосной схеме взаимного расположения электродвигателя и выходного вала. А также червячные мотор-редукторы с расположением электродвигателя под 90град. к выходному валу.

Облaсть применения редукторов:

Средства автoматизации и сиcтемы управления, устройства регулирования, автoматические и автоматизированные cистемы управления, cледящие мини-приводы, cредства обработки и предcтавления информации, спeциальные инструменты, медицинская тeхника. Наибольшее распространение в промышленности получили планетарные редукторы и цилиндрические редукторы, выполненные по схеме взаимного расположения электродвигателя и выходного вала. Такие механизмы пригодны для использования в умеренных климатических условиях, при установке в помещении или на открытом воздухе под навесом. В стандартном исполнении они грунтуются краской методом окунания, а затем покрываются сине-серой алкидной эмалью воздушной сушки. Имеются также и специальные покрытия. Для экстремальных условий и установки на открытом воздухе имеется окраска для всемирного использования. Верхняя предельная температура 105 K (при температуре охлаждающей среды +40°C), Максимальная допустимая непрерывная температура 155°C.

Цилиндрический редуктор — это одна из самых популярных разновидностей редукторов. Он, как и все редукторы, служит для изменения скорости вращения при передачи вращательного движения от одного вала к другому. Именно редукторный привод один из наиболее распространенных видов приводов современных механических систем общепромышленного применения. Более ста лет назад перед нашей промышленностью стояла задача обеспечить нужды страны в цилиндрических редукторах. С этим успешно справлялись открывающиеся заводы. В настоящее время выпуск качественной и надежной продукции обеспечивается мощной производственной базой. Сейчас производят различные типы продукцией: цилиндрический редуктор одно-, двух-, и трехступенчатый. От работоспособности и ресурса цилиндрического редуктора во многом зависит обеспечение требуемых функциональных параметров и надежности машины в целом. Показатели долговечности и надежности элементов привода и, в частности, редукторов и мотор-редукторов, зависят от обоснованного выбора самого редуктора при проектировании машины, т.е. соответствия этого выбора действующей нормативной документации (НД). Неправильный выбор редуктора снижает его рыночную конкурентоспособность, нанося ущерб производителю, и может привести к значительным экономическим потерям потребителя машиностроительной продукции из-за внеплановых простоев, роста ремонтных затрат и пр. Одно из важнейших требований обеспечения конкурентоспособности цилиндрического редуктора – наилучшее соответствие его паспортных характеристик реальным эксплуатационным условиям нагружения и работы привода машины.

Читайте так же:
Как варить угловой шов инвертором

К цилиндрическим редукторам относятся следующие редуктора: 1Ц2У-100, 1Ц2У-125, 1Ц2У-200, 1Ц2У-250, Ц2Н, Ц2Н-450, Ц2Н-500, Ц2У-315Н, Ц2У-355Н, Ц2У-400Н, Ц2-1000, Ц2-250, Ц2-350, Ц2-400, Ц2-500, Ц2-650, Ц2-750, рм-1000, рм-250, рм-350, рм-500, рм-650, рм-750, рм-850, РЦД-250, РЦД-350, РЦД-400, 1Ц3У-160, 1Ц3У-200, 1Ц3У-250.

Червячный редуктор — это особой вид редуктора по типу передачи (наряду с зубчатыми и гидравлическими) с червячным профилем резьбы. Редукторы — продукция материально-технического назначения, служат для изменения скорости вращения при передачи вращательного движения от одного вала к другому. Все это механика, а если точнее детали машин. Червячный редуктор применяется при передаче движения между скрещивающимися (обычно под прямым углом) осями. Одним из существенных преимуществ червячных редукторов является возможность получить большое передаточное число в одной ступени (до 80 в редукторах общего назначения и до нескольких сотен в специальных редукторах). Данные редукторы обладают высокой плавностью хода и бесшумностью в работе и самоторможением при определенных передаточных числах, что позволяет исключать из привода тормозные устройства. Есть различные варианты данных механизмов, например, одноступенчатые универсальные, двухступенчатые, трех, одноступенчатые с расположением червяка над колесом и глобоидные, а также с различными параметрами: Ч-80, Ч-100, Ч-125, Ч-160, 2Ч-40, 2Ч-50, 2Ч-63, 2Ч-80, РЧУ-125 и т.д.

Коническо — цилиндрический редуктор.

Коническо-цилиндрические редукторы – это разновидность редуктора по конструктивному выполнению рабочих элементов. Он, как и все редукторы, служит для изменения скорости вращения при передачи вращательного движения от одного вала к другому. Именно редукторный привод один из наиболее распространенных видов приводов современных механических систем общепромышленного применения. Данный тип редукторов обладают высоким КПД и значительной долговечностью. Встречается коническо-цилиндрический редуктор для приводов конвейерных линий, для привода тягового шахтного электровоза и т.д. В привод последнего, например, входят еще колесная пара и букс . От работоспособности и ресурса коническо цилиндрического редуктора во многом зависит обеспечение требуемых функциональных параметров и надежности машины в целом. Показатели долговечности и надежности элементов привода и, в частности, редукторов и мотор-редукторов, зависят от обоснованного выбора самого редуктора при проектировании машины, т.е. соответствия этого выбора действующей нормативной документации (НД).

К коническо-цилиндрическим редукторам относятся: КЦ1-200, КЦ1-250, КЦ1-300, КЦ1-400, КЦ1-500, КЦ2-1000, КЦ2-1300, КЦ2-500, КЦ2-750

Кинематические схемы некоторых наиболее распространенных цилиндрических редукторов общего назначения приведены на Рисунке 1. На всех схемах ведущий и ведомый валы соответственно обозначены Б и Т (быстроходный, тихоходный).

а) одноступенчатый редуктор., б) двухступенчатый редуктор., в) трехступенчатый редуктор., г) соосный редуктор., д) симметричное расположение опор., е) раздвоена тихоходная передача., ж) редуктор с раздвоенной передачей., з) на быстроходном валу посажены две косозубые шестерни с противоположными углами наклона зубьев., и) трехступенчатый редуктор с раздвоенной быстроходной и тихоходной передачами.

Рисунок 1- Кинематические схемы цилиндрических редукторов общего назначения.

  1. Дисковые тормоза: назначение, применение, конструкция, принцип действия.

Не многие знают, но дисковые тормоза были изобретены первыми. Прототипом послужил механизм торможения карет и конных упряжек. Именно на них стали устанавливаться первые дисковые тормоза. Представляли они собой деревянные «башмаки», которые системой рычагов прижимались к ободу колеса и в случае необходимости, тормозили его. Потом на них стали устанавливаться кожаные накладки, для увеличения срока службы и т.д. Как ни странно, но барабанные тормоза, получили широкое распространение и обогнали дисковые на десятилетия. И только благодаря появлению мощных двигателей ДВС в середине 50-х, понадобилась недорогая, эффективная и простая система тормозов, коей и стали дисковые тормоза.

Читайте так же:
Как сделать точечные светильники на потолке

. 1-тормозной шланг., 2- колесный тормозной цилиндр., 3-тормозные колодки., 4- тормозной диск., 5- защитный кожух., 6- шпильки для крепления колеса.

Рисунок 2- Дисковой тормозной механизм.

Дисковая тормозная система, как и любая другая, предназначена для изменения скорости движения автомобиля. В состав системы входит:

Тормозной диск, устанавливается на ступицу колеса и прижимается к ней гайками или болтами колес. Для лучшей вентиляции и отвода тепла при торможении, имеет вентиляционные отверстия. Диск считается само очищаемым, так как тормозные колодки не дают скапливаться на поверхности диска грязи и др.

Суппорт, представляющий собой чугунный корпус, состоящий из двух половин, из которых одна крепиться жестко, а вторая двигается, относительно ее в горизонтальной плоскости. Для крепления двух половин применяются направляющие втулки (для современных дисковых тормозов). Более старый вариант суппортов, состоял из одного неподвижного корпуса.

Тормозной цилиндр(ы) – устройство, состоящее из корпуса, внутри которого находится подвижный поршень. На поршень одета уплотнительная манжета, изготовленная из масло-бензо стойкой резины. На корпусе установлен спускной штуцер, для удаления скопившегося воздуха, при прокачке тормозов.

Тормозные колодки – это металлические пластины, на которые закреплены фрикционные накладки, изготовленные из не горящего, плотного и устойчивого к стиранию материала, например производных из асбеста. Устанавливаются в корпус суппорта, по обеим сторонам тормозного диска.

Процесс торможения происходит следующим образом: водитель нажимает на педаль тормоза, главный гидравлический цилиндр создает давление в тормозных трубках. Давление тормозной жидкости приводит в действие поршень тормозного цилиндра. Поршень нажимает на тормозную колодку, которая прижимается к тормозному диску, в это же время действует сила в противоположном направлении, что заставляет вторую половину суппорта с тормозной колодкой прижиматься к другой стороне диска. Таким образом, диск, зажатый между тормозными колодками, начинает уменьшать скорость. Соответственно и колесный диск начинает тормозиться. После отпускания педали тормоза, давление пропадает, но вернуть поршень в исходное положение, позволяет мелкая вибрация диска, во время движения. Если диск будет иметь кривизну, то и поршни «утопятся» глубже, это приведет к тому, что при последующем нажатии на педаль, ее нужно нажать несколько раз, что бы подвести колодки к диску. Соответственно эффективность тормозов снижается.

Колодки находятся на минимальном расстоянии от поверхности диска и для их удержания, применяются стопорные пластины или пружины, реже штифты, которые служат одновременно и «успокоителями» тормозных колодок.

  1. Требования, предъявляемые к строительным машинам.

Общие требования к машинам обусловлены необходимостью обеспечения высокой эффективности их использования в строительстве- наибольшей производительности при наименьших затратах. В последнее время отечественный рынок строительных машин пополнился машинами зарубежных производителей, вместе с которыми к нам импортировались новые тенденции во взаимоотношениях поставщиков с потребителями.

Требования, предъявляемые к подбору комплектов машин, вытекают из определения понятия комплексной механизации. Решение этого вопроса непосредственно связано со структурой парка машин.

Важнейшими требованиями, предъявляемыми к строительным машинам, являются требования обеспечения благоприятных условий работы машинистов и обслуживающего персонала. Эти требования определяют содержание социальной приспособленности машин, основой которой являются их эксплуатационные, эргономические, эстетические и экологические свойства.

Конструкции и расчет редукторов

Конические редукторы выполняются двух типов: узкого и широкого. В редукторах узкого типа ширина колеса 0,25Rе, в редукторах широкого типа 0,3. 0,4Re, где Re — внешнее конусное расстояние.

Узкий тип редукторов применяется для передаточных чисел от 3 до 5, а широкий — от 1 до 2,5. Число зубьев шестерен в редукторах узкого типа рекомендуется выбирать от 20 до 23, в редукторах широкого типа — от 25 до 28.

На листе 132 показан конический редуктор. Конические редукторы изготовляются с цельнолитыми чугунными или стальными корпусами и крышками. В качестве опор валов широкое применение получили конические однорядные роликоподшипники, воспринимающие радиальные и осевые усилия, возникающие при работе конического зацепления. Смазывание зубчатого зацепления осуществляется из масляной ванны редуктора путем погружения колеса в масло, смазывание подшипников — маслом, разбрызгиваемым шестерней и колесом. Для смазывания подшипников шестерни разбрызгиваемое масло собирается в кармане расточки редуктора и оттуда через отверстия в стакане поступает к подшипникам. Смазывание подшипников вала колеса осуществляется маслом, которое разбрызгивается колесом и попадает на стенки корпуса. Масло, стекая со стенок, попадает в подшипники.

Читайте так же:
Дип 300 токарный станок органы управления

В табл. 191 приведены габаритные и присоединительные размеры конических редукторов узкого (лист 133) и широкого (лист 134) типа. Значения передаваемых моментов, выраженные через отношение передаваемой мощности Р к частоте вращения тихоходного вала nт, приведены в табл. 192 и 193.

Конструкции конических редукторов

Рис. 13.

Значения ширины зубчатого венца b, мм

Конструкции конических редукторов

Примечание. Допускается применять ширину зубчатых венцов, определяемую расчетным путем по ГОСТ 19326-73 и ГОСТ 19624-74.

Конструкции конических редукторов

Габаритные и присоединительные размеры конических редукторов (листы 133,134), мм

Конструкции конических редукторов

Конструкции конических редукторовКонструкции конических редукторов

Конструкции конических редукторов

Конструкции конических редукторов

Допустимые значения отношения в конических редукторах узкого типа

Конструкции конических редукторов

Конструкции конических редукторов

Допустимые значения отношения в конических редукторах широкого типа

Конструкции конических редукторов

Выбор конических редукторов

Значения отношения Р/nт для редукторов узкого и широкого типа, указанные в табл. 192 и 193, рассчитаны по поверхностной прочности рабочих поверхностей зубьев и по напряжениям изгиба зубьев шестерни при передаче равномерной, реверсивно действующей нагрузки. Зубчатые колеса выполнены с тангенциальными зубьями с углом спирали около 15°. Материал шестерни кованая сталь с пределом прочности σв = 700 МПа и пределом текучести σт = 450 МПа. Материал колеса кованая сталь с σв = 600 МПа и σт = 350 МПа

Редуктор выбираемся по наибольшему крутящему моменту на тихоходном валу. По заданному наибольшему моменту определяют значение отношения

Конструкции конических редукторов

где ТТз — заданный наибольший момент на тихоходном валу редуктора. При этом должно удовлетворяться условие

Конструкции конических редукторов

Конструкции конических редукторов

где -значение, взятое по табл. 192 и 193.

При заданной наибольшей мощности на тихоходном валу и частоте вращения тихоходного вала определяют

Конструкции конических редукторов

Конструкции конических редукторов

где — расчетное значение отношения мощности на тихоходном валу редуктора к частоте вращения тихоходного вала; РТз — наибольшая заданная мощность на тихоходном валу; nТз — заданная частота вращения тихоходного вала, мин -1 ; K1 — коэффициент, учитывающий характер нагрузки; К2 — коэффициент, учитывающий продолжительность работы редуктора, определяемый по графику (рис. 14).

Значения коэффициента К1 в зависимости от нагрузки следующие:

Конструкции конических редукторов

Значение коэффициента К2 определяется отдельно по поверхностной прочности и по прочности зубьев на изгиб в зависимости от общего срока службы редуктора t. Если значение t выходит за пределы графика, то в расчет принимается соответствующее предельное значение К2.

При известных значениях К1 и К2 определяется alt=»Конструкции конических редукторов» width=»» height=»» />и по заданным передаточному числу и частоте вращения тихоходного вала по табл. 192 и 193 определяют редуктор. Следует иметь в виду, что расчетные значения alt=»Конструкции конических редукторов» width=»» height=»» />как по поверхностной прочности зубьев, так и по изгибу должны быть ниже допускаемых.

Конструкции конических редукторов

Пример. Для привода тянущих роликов закалочной установки выбрать размеры конического редуктора. Крутящий момент на тихоходном валу редуктора ТТ = 625 Н·м при непрерывной работе в течение 16 ч в сутки (205 дней в году, полный срок службы 6 лет). Частота вращения тихоходного вала nт = 400 мин -1 , передаточное число и = 3,75. Срок службы редуктора t = 16·205·6 = 19500 ч. По характеру нагрузки принимаем коэффициент K1 = 1. По графику (см. рис. 14) находим К2 = 1,25 по поверхностной прочности зубьев и К2= 1,11 по изгибу зубьев. Значения :

Конструкции конических редукторов

по поверхностной прочности зубьев

Конструкции конических редукторов

По табл. 192 при nт =400 мин -1 для передаточного числа и = 4 находим значения, близкие к расчетным по поверхностной прочности

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector