Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Медь и ее характеристики

Медь и ее характеристики

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси СuО, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ S02, сероводород H2S, аммиак NH3, окись азота NО, пары азотной кислоты и некоторые другие реактивы.

Рис. 8-1. Влияние примесей на электрическую проводимость меди.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси, даже в ничтожных количествах, резко снижают электропроводность меди (рис. 8-1), делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяются лишь две ее марки (М0 и M1) по ГОСТ 859-66, химический состав которых приведен в табл. 8-1.

В табл. 8-1 не указана бескислородная медь марки М00 (99,99% Си), свободная от содержания кислорода и окислов меди, отличающаяся от меди марок М0 и M1 меньшим количеством примесей и существенно более высокой пластичностью, позволяющей ее волочение в тончайшие проволоки. По проводимости медь М00 не отличается от меди М0 и M1. Медь повышенной чистоты широко используется в электровакуумной технике.

Примеси Bi и Рb в больших количествах, чем указано в табл. 8-1, делают невозможным горячую прокатку меди. Сера не вызывает горячеломкость меди, но повышает ее хрупкость на холоде. Примеси в небольших количествах Ni, Ag, Zn и Sn не ухудшают технологических свойств, повышая механическую прочность и термическую стойкость меди.

Кислород как примесь в малых дозах, не затрудняя заметно прокатку, несколько повышает проводимость меди, так как находящиеся в меди другие примеси в результате окисления выводятся из твердого раствора, где они наиболее сильно влияют на снижение проводимости металла.

Повышенное содержание кислорода снижает проводимость и делает медь хрупкой в холодном состоянии, поэтому в электротехнических марках меди присутствие кислорода ограничивается (табл. 8-1). Медь, содержащая кислород, подвержена также водородной болезни. В восстановительной атмосфере закись меди восстанавливается до металла. Во время реакций, идущих с образованием водяных паров, в.меди появляются микротрещины.

Таблица 8-1 Химический состав проводниковой меди (ГОСТ 859-66)

Почти все изделия из проводниковой меди изготовляются путем проката, пресования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При холодной обработке давлением прочность меди в результате обжатия (наклепа) растет, а удлинение падает, однако длительные рабочие температуры наклепанной меди ограничены и лежат в пределах до 160-200 °С, после чего из-за процесса рекристаллизации происходят разупрочнение и резкое падение твердости наклепанной меди. Чем выше степень обжатия при холодной обработке, тем ниже допустимые рабочие температуры твердой меди.

При температурах термообработки выше 900 °С вследствие интенсивного роста зерна механические свойства меди резко ухудшаются. Физические и технологические свойства меди приведены в табл. 8-2.

Влияние температуры отжига на механические свойства и электрическую проводимость меди представлено на рис. 8-2.

Рис. 8-2. Влияние температуры отжига на свойства меди.

Для электротехнических целей из меди изготовляют проволоку, ленту, шины как в мягком (отожженном) состоянии, так и в твердом.

Согласно ГОСТ 434-71 число твердости Бринелля твердых лент при испытании шариком диаметром 5 мм, нагрузке 2500 Н и выдержке 30 с.

В зависимости от рабочей температуры механические свойства меди представлены в табл.8-3.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07-0,15%, а также магнием, кадмием, хромом, цирконием и другими элементами.

Читайте так же:
Виды профнастила для кровли марки

В настоящее время медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большей мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

Медь сплавы и марки

Получение меди: В зависимости от добавок к меди получают сплавы с различными свойствами (высокопрочные, антифрикционные, химически стойкие и др.). Широкое применение для изготовления полуфабрикатов и фасонного литья получили сплавы меди с цинком, оловом, алюминием, бериллием, свинцом, никелем и марганцем.

Плавка меди может производиться во всех плавильных печах, применяемых для приготовления медных сплавов.

Независимо от типа плавильной печи плавка меди ведется под слоем древесного угля. Печи перед загрузкой шихты нагревают до температуры 900—1000° С. На дно плавильной печи засыпают хорошо прокаленный древесный уголь в количестве, достаточном, чтобы покрыть поверхность металла после расплавления, затем загружают медь, отходы и засыпают сверху древесным углем. Процесс плавления должен вестись интенсивно.

После расплавления медь нагревают до заданной температуры и проводят раскисление в два приема: предварительное и окончательное.

Первое осуществляется непосредственно в плавильных печах, а второе — в ковшах перед разливкой расплава.

Предварительное раскисление меди производят фосфористой медью, а окончательное раскисление рекомендуется производить оловом или цинком. Остатки олова и цинка в меди менее вредно влияют на ее свойства, чем остатки фосфора, алюминия и других раскислителей.

После окончательного раскисления медь быстро разливают по изложницам.

Медноникелевые сплавы (копель, константан, мельхиор, нейзильбер) преимущественно плавят в электрических индукционных печах без магнитопровода с основной футеровкой и очень редко плавят в топливных печах. Плавку ведут под слоем флюса, состоящего из плавикового шпата, битого стекла и извести. Древесный уголь может применяться только при плавке медноникелевых сплавов с низким содержанием никеля. Порядок ведения плавки следующий: в расплавленную и раскисленную (фосфористой медью) медь после удаления шлака вводят крупные отходы сплава и чистый никель (при температуре 1450—1500°С), а в последнюю очередь загружают мелкие отходы, стружку и т. п. Марганец вводят в. чистом виде, в виде лигатуры медь — марганец или в виде ферромарганца. Окончательным раскислителем служит магний, который добавляют в количестве 0,05—0,1% от веса шихты. Температура литья 1300—1350° С. Шихтовые материалы медноникелевых сплавов не должны содержать углерод и серу, так как эти примеси являются вредными для этих сплавов.

Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПа ε— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПаσизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, % n— количество циклов нагружения
s в— предел кратковременной прочности, МПаR и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T— температура, при которой получены свойства, Град
s T— предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по БринеллюC— удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV— твердость по Виккерсу pn и r— плотность кг/м 3
HRCэ— твердость по Роквеллу, шкала Са— коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB— твердость по Роквеллу, шкала Вσ t Т— предел длительной прочности, МПа
HSD— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Медные сплавы

Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».

Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.

медный сплав

В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.

Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.

В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:

  • медный колчедан,
  • халькозин,
  • борнит,
  • ковеллин,
  • куприт,
  • азурит,
  • малахит.

Медные сплавы, их свойства, характеристики, марки

Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.

Бронза

Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

бронза

Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

Буквенные обозначения легирующих элементов бронз:

  • А – алюминий,
  • Б – бериллий,
  • Ж – железо,
  • К – кремний,
  • Мц – марганец,
  • Н – никель,
  • О – олово,
  • С – свинец,
  • Ц – цинк,
  • Ф – фосфор.

Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

Латунь

Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

латунь

Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

Медно-никелевые сплавы

  • Мельхиор — сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
  • Нейзильбер – дополнительно содержит цинк,
  • Константан – дополнительно содержит марганец.

У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

Выпускается 2 марки мельхиора:

  • МНЖМц – сплав меди с никелем, железом и марганцем;
  • МН19 – сплав меди и никеля.

Область применения сплавов меди

Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.

У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.

Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.

сантехника из латуни

В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.

Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.

Медные сплавы имеют не меньшую сферу применения.

Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.

Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны. В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.

Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.

Применение меди

Медь находится на втором месте по популярности среди всех цветных металлов. Основной источник получения меди – это медная руда, которую добывают в многочисленных месторождениях сланца и песчаника.
Чистый металл имеет красно-розовый цвет и характеризуется высокими показателями тепло- и электропроводности. К примеру, по уровню теплопроводности она лучше железа в 6 раз.

Область применения меди

Как в форме чистого металла, так и в сочетании со сплавами медь применяется в разных промышленных областях.
Ее свойства позволяют активно применять этот металл электротехники. Свыше 50% добытого металла используется для производства всевозможных электроприборов и электропередач.
Высокие показатели электро- и теплопроводности обуславливают широкое использование меди в строительной отрасли. Как известно, металл отличается устойчивостью к отрицательному действию коррозии и ультрафиолетовых лучей, также не деформируется в условиях резких колебаний температурного режима.
Самым популярным продуктом из меди являются провода. Для их изготовления применяется максимально чистый металл, потому что дополнительные примеси в значительной степени уменьшают показатель токопроводимости. К примеру, если в готовом продукте будет присутствовать свыше 0,02% алюминия, то способность продукта проводить ток падает на 10%.
Хорошая вязкость и пластичность обуславливают популярность меди для создания продукции с различными узорами. В результате обжига, проволока, созданная из красной меди, приобретает максимальный уровень пластичности и мягкости. Из нее можно формировать узоры и орнаменты любой сложности.
Такую проволоку применяют в:

  • электротехнике
  • электроэнергетике
  • автомобилестроении
  • судостроении
  • производстве кабеля и проводов.

Высокий показатель теплопроводности меди позволяет использовать ее в различных теплообменниках и теплоотводных приборах. Именно из меди создают кулера для системных блоков, радиаторы отопления, трубы, кондиционеры и другие механизмы.
Несмотря на довольно высокую стоимость медных труб, их достоинства неоспоримы:

  • не боятся ультрафиолетового излучения
  • устойчивы к образованию коррозии
  • не реагируют на температурные перепады. Поэтому монтаж можно проводить даже в условиях низких температур воздуха.

Вследствие высокого показателя механической прочности, а также возможности механической обработки специалисты создают бесшовные медные трубы, имеющие круглое сечение. Они предназначены для транспортировки жидких веществ или газов в системах газо- и водоснабжения, кондиционирования и отопления.
Пожалуй, самым первым материалом, из которого сделали кровельное покрытие, была медь. Такой вариант кровли характеризуется долгим периодом эксплуатации — около 200 лет. Через определенное время кровля из меди окисляется, вследствие чего формируется пленка патины. Она защищает
поверхность меди от неблагоприятного действия ультрафиолета, низкой температуры, влажности и других погодных явлений.

Сплавы меди и их применение

Сплавы меди и их применение

Медь и ее сплавы широко используются в процессе возведения линий электропередач и устройств разного типа связи. Сплавы применяют в электромашиностроительной отрасти, в создании разных приборов, при изготовлении холодильников, вакуум-аппаратов.
Примерно половина всей меди используется на нужды электропромышленности. На базе меди получено огромное количество сплавов с разными металлами, например, Zn, Sn, Al, Be, Ni, Mn, Pb, Ti, Ag, Au. Существуют сплавы и с неметаллами, например, с фосфором, серой, кислородом и другими.
Сфера использования таких сплавов довольно обширна. Большая часть их них отличается высокими антифрикционными качествами. Сплавы используют в литой и кованой форме, а также в порошковой форме. К примеру, широко используются сплавы:

  • оловянные. Содержат от 4 до 33 % Sn
  • свинцовые. В них содержится примерно 30 % Pb
  • алюминиевые. Содержат от 5 до 11 % Al
  • кремниевые. В таких сплавах присутствует 4-5 % Si
  • сурьмяные бронзы, которые востребованы в производстве подшипников, теплообменников и прочих материалов в виде листа, прутков и труб для химической, бумажной и пищевой промышленности.

Разные сплавы меди с хромом, а также вольфрамовый порошковый сплав применяются для изготовления электродов и электроконтактов.
Сложно представить себе химическую промышленность и машиностроение без латуни — сплава меди с цинком (до 50 % Zn). Чаще всего в небольших количествах тут присутствуют и другие элементы, например, Al, Si, Ni, Mn. Сплавы меди с фосфором (6-8 %) применяют как припои.

Использование меди в медицине

Применение меди в медицинской отрасли можно встретить довольно часто. Согласно нормам традиционной медицины — медь это крайне важный элемент жизнедеятельности человека. В нашем организме медь присутствует в объеме 2*10-4 % от общего веса человека. Каждый день вместе с пищей мы употребляем примерно 60 мг меди, однако усваивается лишь 2 мг, но именно это количество и является суточной нормой для взрослого человека.
Медь крайне важна в процессе биосинтеза гемоглобина, а также в поддержании уровня сахара, холестерина и мочевой кислоты. Чтобы сердечно-сосудистая система, головной мозг, пищеварительный тракт работали как положено, необходима медь. При хроническом недостатке меди в организме человека развиваются следующие болезни:

  • анемия
  • остеопороз
  • глаукома
  • псориаз
  • атрофируется сердечная мышца
  • человек быстро устает, теряет вес
  • в организме накапливается холестерин.

Самыми богатыми продуктами, содержащими медь, являются:

  • шампиньоны
  • картофель
  • печень трески
  • цельное зерно
  • устрицы и каракатицы.

Применение и маркировка меди

Чтобы выяснить конкретный состав, по классификации ГОСТ 859-2001, имеется особая таблица с характеристиками и маркировками.
Наиболее востребованной является катодная медь или медные полуфабрикаты, другими словами катанка, прокат, слитки и предметы из медных сплавов. Особенности и сфера использования металла, по данным таблицы ГОСТ 859-2001, определяются согласно процентному содержанию разных примесей. Разные марки меди содержат от 10 до 50 разных примесей. Чаще всего наблюдается разделение на две группы:

  • сплав, в котором содержится минимальное количество кислорода (до 0,011 %). Этот сплав имеет высокую чистоту. Обозначение по ГОСТ 859-2001 – М00, М01, медь М3. Применяются главным образом для создания токопроводников или сплавов высокой степени чистоты
  • рафинированный металл, в котором содержится примесь фосфора для общего применения. Обозначения по ГОСТ 859-2001 – М1ф, М2р, М3р. Из такого металла создают трубы, горячекатаные и холоднокатаные листы, фольга.

Применение и маркировка меди

Стоит отметить, что данные классификации по ГОСТ 859-2001 соответствуют иностранным данным классификации по DIN. В иностранной классификации обязательно должны быть обозначены химические элементы и примеси. К примеру, марка М00 – это CuOFE, M1 – CuOF.
Для криогенной промышленности применяется исключительно наиболее чистые металлы, бескислородные марки. Для всех остальных нужд самыми популярными являются такие виды горячего и холодного проката, которые используются в разнообразных отраслях строительства и производства:

  • М0, М00 – применяется для создания электропроводников и изделий высокой частоты. Они делаются только под заказ и отличаются более высокой стоимостью
  • М001б, М001бф – из них делают медную проволоку небольшого сечения, электрические шины, проводку
  • медь М1 (М1р, М1ре, М1ф) – это отличные проводники тока, прокатные материалы и высококачественные бронзы, имеющие максимально низкое количество олова. Из такой меди создают прутья и электроды для электрической сварки чугуна и прочих плохо свариваемых металлов
  • медь М2 (М2к, М2р). Она подходит для создания изделий для криогенной техники, литого проката для обработки давлением.
  • медь М3 (М3р, М3к) применяется в процессе создания прессованных полуфабрикатов и плоского проката. Кроме этого, из нее делают проволоку для электромеханической сварки медных и чугунных предметов.

Соединения меди

Далее рассмотрим наиболее востребованные соединения меди и их применение. Начнем с фунгицидов. Свыше сотни лет они применяются для борьбы с ложномучнисторосяными и несовершенными грибами, которые являются причиной пятнистости вегетативных органов растений. Фунгициды на основе меди и сегодня являются основными в системе антирезистентной программы к системным фунгицидам.
Пестициды, изготовленные на основе меди, очень востребованы в целях защиты садов и виноградников от вредителей и болезней.
Очень популярен сульфат меди. Применение это вещества происходит повсеместно и в различных областях. Сульфат меди(II) является наиболее важной солью меди. Он является исходным материалом для синтеза многих веществ. Безводный сульфат меди используют в качестве индикатора влажности. В лабораторных условиях он отвечает за осушку этанола и ряда других соединений.
Однако, наибольший объем медного купороса CuSO4 расходуется для борьбы с вредителями в сельскохозяйственной отрасли.

Гидроксид меди применение

Гидроксид меди, также ка и сульфат является отличным фунгицидом. Он защищается растения от различных болезней, как грибковых, так и бактериальных.
Плюсы использования гидроксида меди:

  • широкий перечень инфекций, на которые действует соединение
  • можно использовать практически для всех видов растений
  • питательные вещества меди обеспечивают долгий срок хранения овощей и фруктов
  • низкое содержание меди вследствие насыщения препаратов ионами Cu++
  • устойчив к осадкам
  • не оказывает негативного действия на природу
  • невысокая стоимость.

Оксид меди применение

Оксид меди — CuO очень востребован в процессе изготовления стекла и эмалей. Он придает готовым изделиям зелёный и синий оттенок. Также оксид меди незаменим в производстве медно-рубинового стекла.
В лабораторных условиях он используется для выявления восстановительных качеств различных соединений. Вещество способно восстановить оксид до металлической меди. При этом наблюдается переход чёрного цвета оксида меди в розовый оттенок меди.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector