Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие величины определяют потенциальную энергию растянутой пружины

Какие величины определяют потенциальную энергию растянутой пружины

Если тело некоторой массы двигалось под действием приложенных сил, и его скорость изменилась от до то силы совершили определенную работу .

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силы перемещения скорости и ускорения направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать , , и как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как . При равноускоренном движении перемещение выражается формулой

Отсюда следует, что

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии.

Это утверждение называют теоремой о кинетической энергии . Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью то для его полной остановки необходимо совершить работу

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещения на ось , направленную вертикально вверх:

,

где – проекция силы тяжести, – проекция вектора перемещения. При подъеме тела вверх сила тяжести совершает отрицательную работу, так как . Если тело переместилось из точки, расположенной на высоте , в точку, расположенную на высоте от начала координатной оси (рис. 1.19.3), то сила тяжести совершила работу

.

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Потенциальная энергия зависит от выбора нулевого уровня, т. е. от выбора начала координат оси . Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой на расстоянии от центра Земли, имеет вид (см. §1.24):
где – масса Земли, – гравитационная постоянная.

Читайте так же:
Дрель с перфоратором интерскол

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину , или сначала удлинить ее на , а затем уменьшить удлинение до значения и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы , взятой с противоположным знаком (см. §1.18):
где – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, т. е. сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно , тогда при переходе в новое состояние с удлинением сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой посредством сил упругости.

Свойством консервативности наряду с силой тяжести и силой упругости обладают некоторые другие виды сил, например, сила электростатического взаимодействия между заряженными телами. Сила трения не обладает этим свойством. Работа силы трения зависит от пройденного пути. Понятие потенциальной энергии для силы трения вводить нельзя.

Как определить жесткость пружины по массе?

Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Как определить жесткость пружины?

Определение коэффициента жесткости растяжения

  1. Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  2. Измеряется длина пружины с подвешенным грузом – L2. …
  3. Вычисляется разница между последним и первым показателем длины – L;
  4. Рассчитывается коэффициент упругости по формуле: k = F/L.

Как определить жесткость пружины Физика 7 класс?

¯F=kΔl(1), где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) k. Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют.

Как найти жёсткость если известна масса?

В итоге этих экспериментов появилась такая формула: kx=mg, где k – некий постоянный для данной пружины коэффициент, x – изменение длины пружины, m – ее масса, а g – ускорение свободного падения (примерное значение – 9,8 м/с²).

В чем обозначается жесткость пружины?

Обозначается буквой k, иногда D или c.

Как определить растяжение пружины?

Определение коэффициента жесткости растяжения

  1. Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  2. Измеряется длина пружины с подвешенным грузом – L2. …
  3. Вычисляется разница между последним и первым показателем длины – L;
  4. Рассчитывается коэффициент упругости по формуле: k = F/L.

Чему равна жесткость пружины если под действием силы 4 Н?

Как найти коэффициент жесткости 7 класс?

Для определения жесткости пружины зависимость записывается математически с помощью следующей формулы: F = k·x; где х — длина предмета после его растяжения, а k — коэффициент жесткости.

Как найти удлинение пружины?

Эта формула, а точнее закон Гука, выглядит так: F=|kx|, где k – это коэффициент упругости пружины, x – это удлинение пружины или же, как её ещё называют, величина деформации пружины.

Читайте так же:
Как сделать реечный домкрат своими руками

Как найти энергию пружины?

Потенциальная энергия упруго растянутой пружины прямо пропорциональна коэффициенту жёсткости пружины (k) и квадрату величины абсолютной деформации пружины Δ x . Определяют потенциальную энергию упруго растянутой пружины по формуле: E пот = k ⋅ Δ x 2 2 .

Чему равна жесткость пружины Если под действием груза 1000?

k=F / dL. k=1000 / 0,001=10^6H / м.

Чему равна жесткость пружины Если тело массой 30 г?

отсюда: Ответ: ≈ 30 Н/м.

Как изменяется жесткость пружины в зависимости от ее длины?

Чем больше длина пружины L, тем больше витков n содержит она. Чем больше витков n при прочих одинаковых характеристиках, тем жесткость k пружины меньше. Следовательно, при уменьшении длины пружины её жёсткость увеличивается.

Что такое жесткость тела?

Механи́ческая жёсткость (также жёсткость) — способность твёрдого тела, конструкции или её элементов сопротивляться деформации (изменению формы и/или размеров) от приложенного усилия вдоль выбранного направления в заданной системе координат.

Чему равно k в силе упругости?

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: Fx = Fупр = –kx. Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела.

Как определяется жёсткость в физике?

Выглядит эта формула так: F = –kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

§ 6.6. Потенциальная энергия

Рассмотрим вначале работу внутренних сил системы, состоящей из земного шара и поднятого над поверхностью Земли тела, например камня. При небольших расстояниях от поверхности Земли эту силу можно считать постоянной и равной:

Сила, действующая на камень, направлена вертикально вниз. Вычислим работу этой силы при перемещении камня вверх вдоль прямой ВС (рис. 6.9).

Начальная точка В находится на высоте h1 над Землей, а конечная точка С — на высоте h2. Ось Y направим вертикально вверх, а ось X вдоль поверхности Земли. Работа

При движении камня вверх сила тяжести совершает отрицательную работу. Если бы камень двигался вниз, то работа была бы положительной.

Работой силы, действующей на Землю со стороны камня, можно пренебречь, так как перемещение Земли ничтожно мало из-за ее огромной массы(1).

Итак, работу силы тяжести можно представить в виде разности двух значений величины, зависящей от взаимного расположения тела и Земли.

Величину, равную произведению массы т тела на ускорение свободного падения g и высоту h тела над поверхностью Земли, называют потенциальной(2) энергией взаимодействия тела и Земли. Обозначим потенциальную энергию через Еp:

С учетом (6.6.3) выражение для работы (6.6.2) запишется так:

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Когда сила тяжести совершает отрицательную работу, то потенциальная энергия увеличивается: Еp2 > Еp1, При совершении положительной работы потенциальная энергия, напротив, уменьшается:

Из выражения (6.6.2) видно, что работа силы тяжести определяется лишь изменением высоты h2 — h1 тела над поверхностью Земли, но не зависит от перемещения его в горизонтальном направлении. Это справедливо не только для работы при перемещении тела вдоль прямой, но и для работы на произвольном участке пути. В самом деле, если тело перемещается вдоль кривой ВС из точки, находящейся над землей на высоте h1, в точку, лежащую на высоте h2 (рис. 6.10), то работа вдоль этой кривой равна работе вдоль ступенчатой линии, состоящей из вертикальных и горизонтальных отрезков малой длины. На горизонтальных отрезках работа равна нулю, а сумма работ на вертикальных отрезках равна работе на вертикальной прямой длиной h2 — h1. Поэтому работа по-прежнему будет выражаться формулой (6.6.2).

Читайте так же:
Выбор кабель канала по сечению кабеля

Следовательно, работа силы тяжести не зависит от формы траектории и определяется только начальным и конечным положением тела. На замкнутой траектории работа равна нулю, так как изменение потенциальной энергии при этом равно нулю.

Именно независимость работы силы тяжести от формы траектории, по которой перемещается тело, позволяет ввести понятие потенциальной энергии.

Работа силы упругости

Вычислим работу, которую совершает растянутая пружина при перемещении прикрепленного к ней тела.

На рисунке 6.11, а показана пружина, у которой один конец закреплен неподвижно, а к другому концу прикреплен шар. Если пружина растянута (рис. 6.11, б), то она действует на шар с силой 1 направленной к положению равновесия шара, в котором пружина не деформирована. Начало отсчета оси X совместим с концом пружины в нерастянутом состоянии.

Вычислим работу силы упругости при перемещении шара из точки с координатой х1 в точку с координатой х2. Из рисунка 6.11, в видно, что модуль перемещения |Δ| = х1 — х2.

При деформации пружины сила упругости изменяется линейно с изменением координаты: F = k|x|. Для вычисления работы воспользуемся графиком зависимости силы от координаты шара (рис. 6.12). Как было показано в § 6.2, работу силы упругости при перемещении |Δ| = х1 — х2 можно считать численно равной площади трапеции BCDM. Обозначив через F1 модуль силы упругости в начальном положении шара, а через F2 — в конечном, получим

Величину можно рассматривать как среднее значение силы, действующей на шар. При линейной зависимости силы от расстояния это среднее значение равно полусумме начального и конечного значений силы.

Теперь рассмотрим два тела, соединенных пружиной и лежащих на гладкой горизонтальной поверхности. Будем считать для простоты, что тела могут перемещаться только вдоль прямой, совпадающей с осью пружины. Модули сил, с которыми взаимодействуют тела, равны:

где l — расстояние между телами, а l — длина пружины в нерастянутом состоянии.

Пусть в начальном положении длина пружины равна l1 (рис. 6.13, а), а в конечном l2 (рис. 6.13, б) (l1 > l2). При сокращении пружины на Δl = l1 — l2 первое тело переместится на расстояние ΔlI, а второе на расстояние ΔlII (см. рис. 6.13, б), так что

Согласно формуле (6.6.5) работа силы упругости по перемещению первого тела равна:

Аналогично работа по перемещению второго тела

Учитывая, что ΔlI + ΔlII = l1 — l2, приходим к выводу: полная работа внутренних сил системы (сил упругости в данном случае) равна:

Выражение (6.6.7) нетрудно преобразовать к виду

где Δl1 = l1 — l, а Δl2 = l2 — l — деформация пружины в начальном и конечном состояниях(3).

Потенциальная энергия деформированной пружины

Формула (6.6.8) показывает, что работа силы упругости может быть представлена как изменение величины

взятое с противоположным знаком.

При сжатии (или растяжении) пружины

Величина Е в формуле (6.6.9) представляет собой потенциальную энергию тел, взаимодействующих посредством пружины.

Работа сил упругости зависит только от деформации пружины, определяемой начальной и конечной длиной пружины. От формы траектории тел, на которые действует пружина, работа А не зависит, подобно тому как не зависит от формы пути работа сил тяжести. Ведь при перемещении любого тела перпендикулярно оси пружины, когда ее длина не меняется, работа будет равна нулю, так как при этом сила перпендикулярна перемещению. Работа определяется разностью значений потенциальной энергии в начальном и конечном состояниях.

Заметим, что потенциальная энергия, определяемая выражением (6.6.9), не зависит от свойств тел, которые связывает пружина. Эту энергию следует считать сконцентрированной в пружине.

Читайте так же:
Как подключить лампочку к проводам на потолке

Консервативные силы

Мы показали, что работа силы тяжести вблизи поверхности Земли и работа сил упругости растянутой пружины не зависят от формы траектории и могут быть представлены как изменения зависящей от координат величины — потенциальной энергии, взятые с противоположным знаком.

Этот результат оказывается справедливым не только для рассмотренных нами сил, но и для любых сил, зависящих от расстояний между телами, но не зависящих от их скоростей. Как мы скоро увидим, механическая энергия, равная сумме кинетической и потенциальной энергий, сохраняется в замкнутой системе лишь в том случае, когда в ней действуют силы, зависящие только от расстояния. Такие силы называются консервативными, т. е. сохраняющимися (вспомните: консервы). Системы, в которых действуют только эти силы, также называют консервативными.

Работа консервативных сил всегда может быть представлена как приращение потенциальной энергии, взятое с противоположным знаком:

Потенциальная энергия тел, взаимодействующих посредством гравитационных сил

Возможные формы потенциальной энергии не исчерпываются выражениями (6.6.3) и (6.6.9). Так, потенциальная энергия двух тел, взаимодействующих друг с другом посредством сил всемирного тяготения, в общем случае записывается так:

где G — гравитационная постоянная.

Чтобы обосновать справедливость формулы (6.6.12), решим обратную задачу. Докажем, что, взяв потенциальную энергию в виде (6.6.12), мы получим для силы взаимодействия точечных тел закон всемирного тяготения Ньютона.

Вычислим, используя формулу (6.6.12), работу по перемещению на малое расстояние |Δ| = г2 — г1 точечного тела массой m1 взаимодействующего с неподвижным точечным телом массой m2 (рис. 6.14).

Если |Δ| мало, то силу взаимодействия тел массами m1 и m2 можно считать постоянной. Работа в этом случае равна:

так как сила и перемещение направлены в противоположные стороны.

Подставляя в эту формулу значение потенциальной энергии (6.6.12), получим:

Если |Δ />| << r2 и |Δ />| << r2, то r1r2 ≈ r 2 .

Допустив, что потенциальная энергия имеет форму (6.6.12), мы пришли к правильному выражению для силы всемирного тяготения.

Можно показать, что выражение для потенциальной энергии Е p = mgh представляет собой частный случай формулы (6.6.12), когда изменение высоты h тела над поверхностью Земли много меньше ее радиуса R.

В самом деле, пусть начальная высота тела массой m над поверхностью Земли равна h1 а конечная — h2. Тогда согласно формулам (6.6.11) и (6.6.12) будем иметь:

Так как R >> h1 и R >> h2, то приближенно

Ускорение свободного падения на поверхности Земли g = G. Поэтому

и, следовательно, Еp = mgh.

Работа сил, зависящих только от расстояний между телами системы (но не от их скоростей), не зависит от формы траектории. Поэтому работу можно представить как разность значений некоторой функции, называемой потенциальной энергией, в конечном и начальном состояниях системы. Значение потенциальной энергии зависит от характера действующих сил.

(1) Разумеется, это справедливо в системе отсчета, которая не перемещается вдоль оси Y.

(2) От латинского слова potentia — возможность.

(3) Это легко проверить, если произвести все действия в формулах (6.6.7) и (6.6.8) и сравнить результаты.

Задачи на тему «Сила упругости. Закон Гука» с решениями

Задачи на тему «Сила упругости. Закон Гука» с решениями

Можно не знать закон Ома и сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал.

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Коэффициент k – жесткость материала.

Читайте так же:
Как отпилить нужный угол

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1. Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

По третьему закону Ньютона:

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в профессиональный студенческий сервис.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector