Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вопрос по х12мф

Вопрос по х12мф

Добрый день!
Вопрос к специалистам. Подскажите пожалуйста, кому не сложно, правельный режим термообрабютки х12мф. А именно, сколько времени нужно выдерживать клинок при калочной температуре, если калить на масло, то нужно ли его (масло) предворительно подогревать.
Пробовал калить при 1030 градусах на масло на выходе получается не больше 50 едениц, в чем подвох?
Спасибо.
З.Ы. Поиск ничего внятного не показал.

http://www.inmet.ru/kh12mf.html
первая же ссылка в гугле по запросу «режимы ТО х12мф»

Я клинки из х12мф толщиной 4 мм выдерживаю при калочной температуре минут 5-7, масло не грею.

Минута на миллиметр толщины, вроде так. Тут приводили пример ТО для D2, если эти стали считать аналогичными, то там по-англицки написано так:

Ramp up to say 500. (260.C), and hold for equalization. Ramp to 1200.F (650.C, equalize throughout the cross section. Then ramp to the austenitize temperature at 1790.F (975.C) to 1850.F (1010.C). Hold at the temperature and soak for 1 minute per 1 mm of maximum cross sectional area, and follow with the quench.

Не силён в английском, но похоже разговор идёт «об этом».

В муфеле нагреваете?
Хрен знает почему так! если не затруднит отпишите потом о результатах.

з.ы. еще один + в пользу каленных поковок, но они же как то калятся?

У меня макс. 58 было, грел в горне.

В теории как не крути должно ЛЕГКО за 60 HRS перевалить:

Закалка 1000-1030 С, масло. Отпуск 200С с выдержкой 1,5 ч. — 63 HRS
Закалка 1000-1030 С, масло. Отпуск 300С с выдержкой 1,5 ч. — 61 HRS
Закалка 1000-1030 С, масло. Отпуск 400С с выдержкой 1,5 ч. — 60 HRS
Закалка 1000-1030 С, масло. Отпуск 500С с выдержкой 1,5 ч. — 60 HRS

Странно, кто-то подложил вместо х12мф что-то другое.

Грел в муфеле. Ставил 1020 градусов, держал минут 10. После закалки на масло натфиль берет очень легко. После етого нагрел в горне до желтого цвета, калил на масло. Произвел отпуск 1,5 часа 300 градусов, твердость хорошая получилась едениц 58 где-то. После етого протравил в кислоте , структура красивая вылезла.
Вот и непонимаю почему после муфельки не закалился.

Возможно шкала не соответствует. Может калибровка нужна? А потом нужно греть немного выше закалочной т-ры, градусов на 10-20-30, т.к. пока вытащите, донесете до масла, т-ра падает и твердость тоже. Грейте выше и смотрите, как начнет калиться, значит нашли нужную т-ру, сразу и муфель поправите.
С Уважением

Практически все легирующие элементы в стали оказывают влияние на скорость протекания структурных превращений и диффузионных процессов не в меньшую сторону. И чем их больше, тем в большей степени. Они же снижают теплопроводность стали.
Это говорит о том, что под закалку (в частности) легированные стали нужно нагревать гораздо медленнее, чем углеродистые, или давать бОльшую выдержку при заданном температурном режиме. Скорость нагрева регулировать очень сложно в простых условиях (программируемые печи есть не у всех), то остаются только выдержки.
По Х12МФ: читал, что выдержка этой стали при Т закалки должна быть 5-6 мин/мм. Или подогрев при Т 800гр. с той же выдержкой, потом до Т закалки вместе с печью.
Да, кстати Х12МФ в отожженом состоянии имеет весьма приличную твердость, что считается ее недостатком. Я, к примеру, полосу режу только болгаркой — наши полотна по металлу садятся на первых 2 см распила .
По D2 у меня тоже есть цитатка:
Hardening
Equalize at preheating temperature of 1450 — 1500 degrees F, than raise temperature to 1825 — 1875 degrees F, soak, and cool in air.
This hardening temperature is critical, overheated blade will not get as hard as it should.
It requires a 20 minutes of soaking time at the hardening temperature prior to air cooling.
С уважением.

Не знаю — насчет 50 — это артефакт какой то. Никаких особенных заморочек с ТО Х12МФ нет.

Читайте так же:
Гидравлический пресс для наконечников кабеля

В приведенной ссылке данные по твердости и ударной вызкости на мой взгляд несколько оптимистичны

Опыт работы с х12мф не большой но особых трудностей не было! Где-то 1040-1060 закалка ,отпуск 280-300 вытягивает до 58-59 единиц. Имхо! С уважением!

Вчера калил D2 толщина 5 мм. Нагрел печь до Т 1050, положил заготовку и грел еще 10 мин. И сразу в масло ком. Т. После остывания царапал стекло. Отпуск 2 часа при Т 200. Немного повело, равнял на прогиб примерно 10 мм, все отлично. Успехов.

Balamoot А если у Вас есть возможность, то может попробовать выдержать с 800 градусов, нагреть с печью до 1070 С и в масло, отпуск не делать а замерять твердость до отпуска и после.
Потом после всего этого разломать заготовку и поглядеть на размер зерна

Подскажите пожалуйста, какая оптимальная рабочая твердость для клинка и х12мф. Есть возможность, купить нож из х12мф с твёрдостью клинка 58HRC.Не маловата ли твёрдость в 58ед?
Подскажите пожалуйста, а то продавец, до завтра ответ о приобретении требует.
Спасибо.

Может от геометрии клинка зависит еще? и смотря что резать, 58 не мягкая, в самый раз.

Для клинка наиболее оптимальной температурой отпуска является точка, когда ударная вязкость начинает расти, а твердость еще почти не снижается. на картинке твердость и ударная вязкость от температуры отпуска.
извиняйте за качество, web-камера — не лучший сканер.
Сталь СКЛОННА К ОТПУСКНОЙ ХРУПКОСТИ, то есть при высоком отпуске происходит снижение ударной вязкости. Из таблички видно, что оптимальной температурой отпуска является 300-400, а следовательно ответ на вопрос

Совсем запутали. Если

еще раз: твердость этой стали падает неравномерно, но монотонно при отпуске. А ударная вязкость KCU вначале растет, а потом начинает снижаться, поскольку сталь СКЛОННА К ОТПУСКНОЙ ХРУПКОСТИ. Поэтому, когда вы закалите сталь, ударная вязкость будет не очень высокая (43 дж на кв. см), а твердость 63 единички. после отпуска на 300 градусов ударная вязкость возрастет в 1,5 раза, а твердость будет 61.

58 HRC будет после отпуска выше 500 градусов, при этом ударная вязкость будет ниже 30 Дж на кв. см, то есть в 1,5 раза ниже, чем у свежезакаленной. При повышении температуры отпуска вы получаете не очень твердую и довольно хрупкую сталь, то есть при правильной термической обработке сталь с 61 единичкой твердости — еще и более вязкая, чем с твердостью 58. Судя по всему, Enzo делают ТО правильно

еще раз: твердость этой стали падает неравномерно, но монотонно при отпуске. А ударная вязкость KCU вначале растет, а потом начинает снижаться, поскольку сталь СКЛОННА К ОТПУСКНОЙ ХРУПКОСТИ. Поэтому, когда вы закалите сталь, ударная вязкость будет не очень высокая (43 дж на кв. см), а твердость 63 единички. после отпуска на 300 градусов ударная вязкость возрастет в 1,5 раза, а твердость будет 61.

58 HRC будет после отпуска выше 500 градусов, при этом ударная вязкость будет ниже 30 Дж на кв. см, то есть в 1,5 раза ниже, чем у свежезакаленной. При повышении температуры отпуска вы получаете не очень твердую и довольно хрупкую сталь, то есть при правильной термической обработке сталь с 61 единичкой твердости — еще и более вязкая, чем с твердостью 58. Судя по всему, Enzo делают ТО правильно

В муфеле ставил 1065, подержал 3 минуты и в масло его )) потом отпуск 400 1.5 часа результат мне понравился..

Спрашивал у романа ковшик про режим то х12мф. Он ответил 950 гр, греть минуту на миллиметр толщины, в масло 30гр. Отпуск 200гр 2часа

Burchitai
БОЛЬШОЕ ВАМ СПАСИБО. За разжеванный ответ. Теперь нужно учить мат. часть

Burchitai Спасибо за подробный ответ и потраченное на мой вопрос время!Стало примерно ясно, чего да как. Осталось узнать про отпускную температуру!
Ещё раз спасибо.

Читайте так же:
Как проверить зарядное устройство аккумулятора

domir.ru

Она предназначена для придания изделиям из металла большей прочности и твердости. Но следует помнить, что при этом они становятся хрупкими. Обычно закаливаются рабочие части инструментов и детали механизмов, подвергающиеся тяжелым нагрузкам. Изделия из низкоуглеродистой стали практически не меняют своих свойств после закалки, поэтому подвергают их термической обработке крайне редко.

Деталь нагревают до температуры, превышающей на 30–70 °C температуру установления правильной кристаллической структуры. Время нагрева должно быть достаточным для установления равномерного строения во всем объеме металла. Оно зависит от размеров детали и ее формы, а также от сорта стали.

Слишком длительная выдержка приводит к тому, что зерна металла увеличиваются, и он теряет прочность. Поэтому продолжительность выдержки ориентировочно берется равной 0,2 от времени нагрева. В горне деталь следует расположить так, чтобы холодный воздух из фурмы не попадал на ее поверхность. Для этого заготовку кладут на слой смешанного с золой угля.

Очень важной частью закалки является охлаждение. От него зависит установление необходимой структуры металла.

Скорость охлаждения не должна быть меньше 150 °C в секунду. Так как температуру заготовки целесообразнее всего доводить до 400–450 °C, то продолжительность процесса составляет лишь 2–3 секунды.

В качестве жидкостей для охлаждения используются вода и трансформаторное масло. В последнем скорость понижения температуры меньше, при нормальных условиях она не превышает 180 °C в секунду. В холодной воде охлаждение идет быстрее – примерно 600 °C в секунду.

При погружении раскаленной детали в жидкость очень важно, чтобы температура последней повышалась очень незначительно. Если объем ее небольшой, то увеличить конвекцию можно помешиванием.

Хороший результат дает закалка в проточной воде, так как при этом образующийся между заготовкой и жидкостью слой пара быстро рассеивается. Улучшить качество закалки можно добавлением в емкость поваренной соли, соды (до 10 %) или серной кислоты (до 12 %).

Когда требуется закалить только часть изделия, например рабочую часть инструмента, после опускания на необходимую глубину его несколько раз перемещают в вертикальном направлении, чтобы не образовалось трещин в промежуточной части.

При неправильном погружении в воду изделие может покоробиться от неравномерного охлаждения. Чтобы этого избежать, надо опускать детали в воду так, как это показано на рис. 157.


Рис. 157. Погружение поковок в охлаждающую жидкость: а – зубило; б – топор; в – сверло; г – напильник; д – клещи.

Скорость охлаждения так же, как и скорость нагрева, зависит от размеров заготовки и материала, из которого она сделана. Изделия из малоуглеродистых сталей охлаждают в воде, но если они имеют сложную форму, то лучше проводить процесс в масле, иначе на поверхности могут появиться трещины.

У заготовок большой площади сечения верхние слои охлаждаются быстрее нижних, поэтому закалка внешней части гораздо более сильная. Если сталь содержит легирующие элементы – такие, как марганец, хром и другие – то глубина закалки увеличивается.

Часто кузнецы выполняют закалку изделий сразу после ковки, что позволяет значительно экономить топливо. Для этого ковка выполняется с таким расчетом, чтобы после ее окончания металл имел температуру, при которой можно проводить закаливание.

С понижением накала изделия скорость охлаждения тоже должна меняться. В интервале 650–450 °C она должна быть не больше 30 °C в секунду. Чтобы достичь такого режима, пользуются способом, который называется «через воду в масло».

Заготовку опускают сначала на несколько секунд в воду, а затем быстро переносят в масло. Время выдержки составляет 1–1,5 секунды на каждые 5 мм сечения детали. Такой способ применяется для закалки инструментов, сделанных из низкоуглеродистой стали.

Часто у различных режущих инструментов требуется закалить только верхнюю поверхность, а середину оставить мягкой. В этом случае пользуются поверхностным способом закалки.

Изделие на короткий срок помещают в горн или раскаленную до 1000 °C печь, а затем подвергают быстрому охлаждению под проточной водой. При этом надо тщательно соблюдать температурный режим закалки, в противном случае не исключено образование трещин.

Читайте так же:
Как сделать пилораму из болгарки

Закалка различается по интенсивности. Получить сильную степень можно с использованием охлажденной до 15–18 °C воды и добавками соли и соды.

Среднюю закалку дает погружение поковки в горячую воду, а также добавление нефти, мазута, жидкого минерального масла и пр. Эти материалы образуют на поверхности пленку толщиной до 3 мм, которая более плавно охлаждает деталь.

Закалка с использованием в качестве охлаждающего материала струи воздуха или расплавленного свинца получается самой слабой.

Таким способом закаливают художественные изделия и части несущих конструкций, требующих большой точности расположения частей.

Большая Энциклопедия Нефти и Газа

Закалка легированных сталей протекает при меньших скоростях охлаждения вследствие снижения критических скоростей охлаждения. Решающим для первого вида термообработки является скорость охлаждения аустеппта, для второго — регулирование температуры и времени отпуска. Первый вид термообработки применяется для упрочнения углеродистых конструкционных сталей ( Ст. В зависимости от скорости охлаждения после закалки образуется дисперсная феррнто-карбидпая смесь, а при весьма больших скоростях охлаждения ( более 1000 в 1 сек.  [1]

Закалка легированных сталей отличается рядом особенностей.  [2]

При закалке легированных сталей применяют способы охлаждения в металлических штампах и водо-воздушных смесях, получаемых в специальных форсунках.  [4]

При закалке легированной стали в ней остается больше остаточного аустенита, чем в углеродистой. При отпуске легирующие элементы оказывают существенное влияние на превращения, что часто делает необходимым проводить отпуск при более высоких температурах.  [5]

В результате закалки легированных сталей получают структуру легированного мартенсита, который содержит не только углерод, но и легирующие элементы. Это оказывает существенное влияние на превращения, протекающие при отпуске.  [6]

Критическая скорость закалки легированных сталей тем меньше, чем больше в них содержится легирующих элементов, чем выше, как говорят, степень их легированности. Следовательно, чем выше степень легированности, тем более глубокой прокаливаемо-стью обладают эти стали.  [7]

В результате закалки легированных сталей получают структуру легированного мартенсита, который содержит не только углерод, но и легирующие элементы.  [8]

Критическая скорость закалки легированной стали также зависит от того, растворен ли легирующий элемент в аустените или находится в виде карбидов. Критическая скорость закалки понижается только в том случае, если легирующий элемент растворен в аустените. При наличии карбидов, наоборот, критическая скорость закалки повышается. Так влияют все легирующие элементы, за исключением кобальта. Кобальт является единственным элементом, повышающим критическую скорость закалки.  [9]

Следующая особенность закалки легированных сталей заключается в сохранении при комнатных температурах некоторого коли чества остаточного аустенита. Количество остаточного аустенитя возрастает с повышением содержания углерода, увеличением степе ни легированности аустенита и замедлением скорости охлаждения з мартенситном интервале. Остаточный аустенит, распадаясь во вре мя нагрева при отпуске, может вызвать или усилить явление низко температурной хрупкости. При низком отпуске сохранение остаточ ного аустенита повышает вязкость, но снижает твердость.  [10]

Температура нагрева под закалку легированных сталей обычно выше, чем углеродистых. Диффузионные процессы в легированных сталях протекают медленнее, так как углерод образует твердые растворы внедрения, а легирующие элементы — замещения. Нагрев под закалку до более высокой температуры сопровождается более длительной выдержкой при этой температуре. Это способствует диссоциации карбидов и лучшей растворимости легирующих элементов в аустените.  [11]

В качестве охлаждающей среды при закалке легированных сталей применяют масло или расплав солей. При изготовлении деталей из стали 7ХГ2ВМ закалка, как правило, осуществляется на воздухе.  [12]

Чтобы уменьшить скорость охлаждения при закалке легированных сталей и снизить напряжение, эти стали подвергают медленному охлаждению в масле или струе воздуха.  [14]

Всем термистам хорошо известно, что для закалки легированных сталей требуется меньшая скорость охлаждения, чем для закалки углеродистых. Большая часть легированных сталей закаливается в масле, а некоторые стали принимают закалку даже при охлаждении на воздухе. Это является большим преимуществом легированных сталей.  [15]

Прокаливаемость сталей

При закалке на мартенсит сталь должна охлаждаться с закалочной температуры так, чтобы аустенит, не успев претерпеть распад на ферритокарбидную смесь, переохладился ниже точки Мн. Для этого скорость охлаждения изделия должна быть выше критической.

Читайте так же:
Датчик движения в камерах видеонаблюдения

Критическая скорость охлаждения (критическая скорость закалки) — это минимальная скорость, при которой аустенит еще не распадается на ферритокарбидную смесь.

В первом приближении критическая скорость закалки определяется наклоном касательной к С-кривой начала распада аустенита. При таком определении получается величина, примерно в 1,5 раза превышающая истинную критическую скорость.

В Кинетике фазовых превращений отмечалось, что при наложении кривых охлаждения на С-диаграмму изотермических превращений нельзя проводить строгих количественных расчетов температур начала и конца превращения исходной фазы при непрерывном охлаждении. Выше точки касания кривой υкр к С-кривой превращение развивается более вяло, чем при температуре, соответствующей точке касания.

Следовательно, за время, равное инкубационному периоду при температуре точки касания, непрерывно охлаждающийся аустенит еще не начнет распадаться. Поэтому истинная критическая скорость меньше той, которая определяется по тангенсу угла наклона касательной к С-кривой начала изотермического распада. Истинную величину υкр можно получить при использовании термокинетических диаграмм (смотрите Кинетика фазовых превращений и Нагрев и охлаждение при закалке без полиморфного превращения).

Определение критической скорости закалки по С-диаграмме

Определение критической скорости закалки по С-диаграмме

Определение критической скорости закалки по С-диаграмме: υц и υп — скорости охлаждения центра и поверхности изделия:

1 — начало распада аустенита;
2 — окончание распада аустенита.

Поверхность изделия всегда охлаждается быстрее, чем центр. Скорость охлаждения на поверхности может быть больше критической, а в центре — меньше. В этом случае аустенит в поверхностных слоях превратится в мартенсит, а в центре изделия испытывает перлитное превращение, т. е. деталь не прокалится насквозь.

Прокаливаемость
— одна из важнейших характеристик стали. Под прокаливаемостью понимают глубину проникновения закаленной зоны.

Прокаливаемость зависит прежде всего от критической скорости охлаждения. На рисунке изображена кривая распределения скоростей охлаждения по диаметру цилиндрического образца в сопоставлении с величиной критической скорости. Кольцевой объем около поверхности изделия охлаждается со скоростью больше критической, и поэтому он закален на мартенсит.

Сердцевина цилиндра охлаждается со скоростью меньше, чем критическая, и поэтому она не закалена на мартенсит.

В массивной детали большого сечения после закалки можно наблюдать всю гамму структур: плавный переход от мартенсита около поверхности через троостомартенсит, троостит и сорбит до перлита в центре.

Прокаливаемость цилиндра

Прокаливаемость цилиндра

а — несквозная прокаливаемость;
б — сквозная прокаливаемость;
1 — кривая распределения скоростей охлаждения по диаметру цилиндра;
2 — критическая скорость охлаждения (заштрихован слой, закаленный на мартенсит).

Если центр изделия охлаждается со скоростью больше критической, то деталь закаливается на мартенсит насквозь. Как видно на рисунке, для увеличения прокаливаемости детали данного сечения необходимо или повышать скорость охлаждения (кривая 1 сдвигается вверх), или понижать критическую скорость закалки: и в том, и в другом случае затрихованное сечение закаленной зоны будет возрастать.

Критическая скорость охлаждения зависит от всех факторов, влияющих на скорость распада аустенита. Факторы, увеличивающие стойкость переохлажденного аустенита против распада, т. е. сдвигающие С-кривые вправо, увеличивают прокаливаемость (при сдвиге С-кривой вправо касательная к ней располагается под меньшим углом).

Устойчивость переохлажденного аустенита против эвтектоидного распада зависит от его гомогенности, размера действительного зерна и химического состава, от присутствия нерастворенных карбидов и других включений в стали и от малых количеств примесей, в том числе и неконтролируемых.

Так как для зарождения эвтектоида необходимы местные обогащения и обеднения γ-раствора углеродом, то чем однороднее аустенит, тем более устойчив он против эвтектоидного распада и тем больше прокаливаемость.

С укрупнением действительного аустенитного зерна уменьшается суммарная межзеренная поверхность, на которой предпочтительно начинается распад, и прокаливаемость увеличивается.

Увеличение температуры нагрева и времени выдержки перед закалкой приводит к выравниванию концентрации γ-раствор а и к росту аустенитного зерна, т. е. повышает устойчивость переохлажденного аустенита. Поэтому с ростом температуры нагрева и выдержки перед закалкой прокаливаамость стали увеличивается, причем первый фактор более эффективен.

Для увеличения прокаливаемости совершенно необязательно закаливать сталь с повышенной температуры.

Выравнивание концентрации γ-раствора и укрупнение его зерна — необратимые процессы. Если сталь была нагрета до высокой температуры, а затем медленно охлаждена в аустенитной области до нормальной температуры закалки, то прокаливаемость также возрастает.

Очень сильно на прокаливаемость влияет химический состав аустенита. С повышением концентрации углерода в аустените он делается устойчивее и критическая скорость закалки уменьшается. Наименьшей критической скоростью, т. е. наилучшей прокаливаемостью, обладают стали, состав которых близок к эвтектоидному.

Зависимость критической скорости охлаждения

Зависимость критической скорости охлаждения

Зависимость критической скорости охлаждения при закалке
от содержания углерода (Эссер).

Повышение критической скорости у заэвтектоидных сталей объясняется тем, что они закаливаются не из аустенитной области, а с температур выше А1, но ниже Аст (смотрите ниже рисунок Интервал температур нагрева под закалку углеродистых сталей). С увеличением содержания углерода в заэвтектоидной стали концентрация его в аустените при нормальной температуре закалки (А1 + З5 — 60 °С) не повышается, а количество цементита растет. Частицы цементита, являясь затравкой для перлитного превращения, уменьшают устойчивость переохлажденного аустенита.

Поэтому с повышением содержания углерода в заэвтектоидной стали критическая скорость закалки возрастает. Если заэвтектоидные стали закаливать с температур выше Аст (из аустенитной области), то критическая скорость охлаждения будет непрерывно уменьшаться с увеличением содержания углерода в стали, так как при этом повышается концентрация углерода в аустените.

Прокаливаемость углеродистой стали значительно возрастает при введении в нее сотых и тысячных долей процента бора. Бор, являясь поверхностно активным элементом в растворе, концентрируется по границам зерен аустенита и снижает здесь поверхностную энергию, что затрудняет предпочтительное образование центров распада по границам зерен, и переохлажденный аустенит становится устойчивее. Поэтому введение малых количеств бора в углеродистую сталь повышает ее прокаливаемость. 

Сталь одной марки, но разных плавок обладает различной прокаливаемостью, что объясняется различием в размере аустенитного зерна, влиянием неконтролируемых количеств растворенных примесей и включений оксидов, нитридов, сульфидов и др.

За исключением кобальта, все легирующие элементы, растворенные в аустените, затрудняют его распад, уменьшают критическую скорость закалки и улучшают прокаливаемость.

Природа замедления распада аустенита под влиянием легирующих элементов обсуждена в Диффузионных превращениях аустенита при охлаждении. Для улучшения прокаливаемости широко используют добавки марганца, никеля, хромай молибдена. Особенно эффективно комплексное легирование, при котором полезное влияние отдельных элементов на прокаливаемость взаимно усиливается. Например, для стали с 0,4% С и 3,5% Ni критическая скорость закалки равна 160 град/с, а добавляемые 0,76% Мо снижает эту скорость примерно до 4 град/с.

Влияние легирующих элементов

Влияние легирующих элементов

Влияние легирующих элементов на критическую скорость закалки
стали, содержащей 0,9 — 1% С (Эссер).

Карбидообразующие элементы увеличивают прокаливаемость лишь в том случае, если они при температуре закалки растворены в аустените. Если же температура закалки недостаточно высока, то нерастворившиеся карбиды, являясь центрами распада аустенита, ухудшают прокаливаемость.

Увеличение прокаливаемости при легировании используют в двух направлениях. Во-первых, применение легированной стали обеспечивает сквозную прокаливаемость в таких больших сечениях, которые невозможно прокалить насквозь, если использовать углеродистую сталь. Например, при закалке в воде стали 45 критический диаметр (смотрите Режимы закалки без полиморфного превращения сплавов на разной основе) равен 20 мм, в то время как изделия из стали 40XHMA диаметром 120 мм прокаливаются насквозь при охлаждении в масле.

Во-вторых, для изделий небольшого сечения замена углеродистой стали легированной позволяет перейти к менее резкому закалочному охлаждению. Применяя углеродистую сталь, можно прокалить насквозь изделие небольшого сечения, если применять закалку в воде.

Но при этом могут возникнуть недопустимо большие остаточные напряжения, а также коробление и трещины, особенно в изделиях сложной формы. Применение легированной стали позволяет заменить закалку в воде более мягкой закалкой в эмульсии, масле или даже на воздухе. 

«Теория термической обработки металлов»,
И.И.Новиков

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector