Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Упорные роликовые подшипники: типы и как устроены

Упорные роликовые подшипники: типы и как устроены

Упорные роликоподшипники – одна из разновидностей сборочных узлов, что предназначены для фиксации детали в пространстве, и обеспечения вращения конструкции с минимальным сопротивлением. Изделие воспринимает и передает динамическую нагрузку на другие детали механизма.
Конструкция предусматривает, что нельзя допускать нагрузку поперек валовой оси. При этом изделие подойдет для механических систем с крайне высокими осевыми нагрузками. Это главная особенность детали, что определяет сферу ее применения.
Такой вид подшипника изготовляют по стандартным технологиям, но изделие может иметь усовершенствования от производителя – к примеру, защитный кожух.

Навигация по статье

Виды изделий

Где используются

Устройство подшипника

роликовый упорный

Деталь состоит из основных четырех элементов – наружного и внутреннего колец, тел качения и стального сепаратора. Особенность конструкции состоит в том, что расстояние между кольцами является прямо перпендикулярным оси вращения. Стандартная конструкция предусматривает две дорожки качения, которые могут быть плоскими или со специальными углублениями. Их разделяет стальной сепаратор, в который встроены тела качения.
Подшипник роликовый радиально-упорный разнится от стандартного шарикового того же размера тем, что поверхность соприкосновения тел с внутренним и внешним кольцом больше. Увеличенная площадь контакта позволяет снизить давление на ролики при аналогичной нагрузке, что позволяет значительно продлить срок эксплуатации изделия.
При этом модели с такой конструкцией могут выдержать удар, и менее подвержены деформациям.

Виды изделий

Упорные роликовые подшипники конструкция

Есть разные типы подшипников на роликовой основе. Их основным различием является вид роликов – движущегося элемента. Согласно этой характеристике, различают:
— цилиндрические. Они оборудованы роликами соответствующей названию (цилиндрической) формы. Высота такого ролика приблизительно равняется его диаметру. Цилиндрический роликовый подшипник подойдет для устройства, что выдерживает значительные нагрузки, но им можно пользоваться лишь на невысокой скорости;
— игольчатые. В них ролики также цилиндрические, но имеют значительно отличие – их длина в несколько раз больше диаметра. Такая конструкция позволяет создать очень компактные изделия, в том числе – упорный игольчатый подшипник без колец, в котором функционируют лишь сепаратор и ролики;
— сферические. Такая форма движущихся элементов станет отличным решением для радиальных и осевых нагрузок, а механизм несложно собрать и установить;
— конические. Ролики конической формы помогут правильно распределить нагрузку при высоких скоростях вращения и не выйдут из строя при непредвиденных ударах.
Также существуют подшипниковые узлы, когда деталь вмонтирована в корпус устройства еще на этапе производства и не является съемной.

Где используются

Упорные роликовые подшипники применяют для значительного количества устройств. Один из примеров – механизм конвейеров. В подобных устройствах легко увидеть особенности работы деталей такого типа. Ведь изделия могут выдерживать очень высокие осевые нагрузки, но не адаптированы к радиальным и комбинированным, применять которые запрещено. При этом механизм устройчив к ударам и физическим деформациям.
Изделия с роликовой конструкцией могут сильно разниться габаритами – от 10 мм до метра и более. А максимальная грузоподъемность габаритных моделей может превышать несколько тонн. Но чем больше механизм, тем ниже скорость вращения. В небольших конструкциях возможно достижения скорости до 10000 об/мин, а объемных – 100-200 оборотов за минуту.

Стоит учесть тот факт, что подшипники можно адаптировать к системе: к примеру, конструкция дает возможность разделить кольца и сепаратор, если деталь будет находиться на поверхности устройства.

Как выбрать подходящие детали

Каждая разновидность имеет свое целевое предназначение. Цилиндрические подойдут для значительных осевых нагрузок. При необходимости можно использовать двойное исполнение изделия, с двумя кольцевыми рядами, что обеспечит передачу нагрузки в обоих (противоположных) направлениях.
Упорные игольчатые подшипники станут отличным решением для ограниченного пространства. Если устройство имеет высокую скорость работы, что предусматривает вращение на высоких оборотах, стоит обратить внимание на шариковые упорные модели.
При комбинации радиальных и осевых нагрузок необходимо выбрать упорные конические детали.
В случае высокого риска перекоса между движущимися частями впоследствии высоких неравномерных нагрузок, стоит обратить внимание на шариковые упорные изделия, что дополнены подкладным кольцом сферической формы.
А подшипник радиально упорный роликовый является универсальным решением при комбинированных нагрузках и угловом перекосе.

Требования по ГОСТу

Подшипники изготовляются по государственному стандарту еще советского образца. В этом есть свои преимущества: модели с определенной маркировкой имеют строго заданные характеристики. Это значительно упрощает выбор изделий. Деталь имеет числовую маркировку – шифр, который определяет диаметр отверстия внутреннего кольца, его наружной цилиндрической поверхности, номинальную ширину изделия, координату монтажной фаски.
Упорный роликовый подшипник ГОСТ, у которого есть заданная маркировка, соответствует и весом. Масса изделия также прописана в таблице госстандарта, что удобно для пользователя.
Деталь легко заменить на аналогичную, выбрать изделие для комплектации устройства и т.д. Это важно, ведь малейшее несоответствие может привести к поломке техники, браку в работе. Но в большинстве случае элемент, который имеет другие характеристики, невозможно установить из-за несоответствия размеров.

Читайте так же:
Как сварить сталь и чугун электросваркой

Чем отличается качественный подшипник

Прежде чем приобрести изделие, стоит обратить внимание на его особенности.

Среди основных характеристик:
— качество материала. Стоит обратить внимание, что не всегда элементы могут быть созданы из стали. В отдельных случаях производители используют керамические движущиеся частицы. Применение других материалов не допускается, ведь они не могут выдержать значительные статические и динамические нагрузки;
— плавность, равномерность движения. Во время работы детали не должно появляться посторонних звуков, тем более механизм не должен «заедать»;
— соответствие размеру. Упорный роликовый подшипник подобрать по размерам крайне важно. Малейшее несоответствие приводит к тому, что деталь будет непригодна к использованию;
— отсутствие дефектов. Стоит быть уверенным в том, что деталь не использовалась ранее. У новых изделий отсутствуют потертости, а цвет однородный.

Внимательный выбор изделия и его правильная эксплуатация – залог его качественного функционирования.

Как определить размеры

Размер подшипника

Бывают случая, когда сложно выбрать подшипник упорный роликовый. Каталог размеры в котором детально прописаны, может помочь, если нет информации о характеристиках детали.
Наиболее простой вариант – это приобретение модели, аналогичной утерянной или поврежденной. Но это не всегда возможно. Решением может стать размерная сетка, в которой предусмотрены минимальные отклонения от нормы. На устройстве есть резьба, паз, что предусматривают использование определенного размера изделия. Проведя необходимые замеры, можно выбрать подходящий вариант.
Если подшипник упорный, который потребует замены, не имел маркировки, решить проблему намного проще: достаточно нескольких замеров, чтобы определить маркировку. Но важны детали – к примеру, внешний диаметр детали измеряют по крайней визуальной линии, охватывая весь подшипник диагонально.
Сначала нужно узнать внутренний диаметр, после – внешний, а потом высоту подшипника. Это и будет его маркировкой.

Зачем нужны подшипники?

Подшипники могут быть классифицированы в зависимости от трения и нагрузки, которую они воспринимают

  1. По типу трения подшипники делятся на: подшипники скольжения — опорная поверхность вала или осей скользит по рабочей поверхности подшипника; качения — трение скольжения заменяется трением качения с использованием промежуточных тел качения.
  2. В соответствии с воспринимаемой нагрузкой подшипники являются: радиальными — они воспринимают только радиальную нагрузку; осевые — воспринимают только осевую нагрузку; радиально-осевые — воспринимают радиальные и осевые нагрузки.
  3. По возможности следовать или нет наклону линии упругого вала — саморегулирующиеся или не саморегулирующиеся.

Видео

Шарикоподшипник

В качестве тела, обеспечивающего покачивание, в этом типе деталей используются шарики, свободно перемещающиеся по дорожкам. Применяются для вращающихся конструкций, в которых не нужно сильное трение между двумя движущимися частями.

Описание

Узел состоит из 2 колец, изготовленных из стали. Вместе они образуют некое «ложе» для шариковых тел. При этом внутренняя часть устройства фиксируется на валу, а наружная – на опоре. При всей простоте конструкции, они широко распространены в промышленности.

Разновидности

Какие бывают типы подшипников с шариковыми телами, можно предположить исходя из общей классификации. Как и большинство деталей качения их разделяют на: радиальные, упорные и с 4-х точечным контактом. Особенность последних заключается в способности воспринимать нагрузку в двух направлениях оси или одновременную комбинированную и осевую с одной стороны.

Применение

Разные виды применяют в электродвигателях и различной бытовой технике, в станках для обработки дерева, в медицинском оборудовании, станочных шпинделях и насосах. Шариковые с 4-х точечным контактом широко распространены в редукторах.

Разновидности подшипников скольжения

Всего размеры и основные характеристики подшипников скольжения, изложены в соответствующих ГОСТ. Всего их насчитывается порядка шести десятков. Например, ГОСТ 11607-82 нормирует требования к разъемным корпусам подшипников скольжения, а ГОСТ 25105-82, предъявляет требования к вкладышам, которые устанавливают в корпуса подшипников скольжения.

Классификация подшипников скольжения

Изделия этого типа можно разделить на следующие основные типы:

  1. Одно- и многоповерхностные.
  2. Со смещением поверхностей.
  3. Радиальные.
  4. Осевые.
  5. Радиально-упорные.
Читайте так же:
Коаксиальный кабель для телевизора какой выбрать

Кроме того, подшипники можно различать по конструкции:

  1. Неразъемные, их называют втулочными.
  2. Разъемные, они состоят из двух деталей основного корпуса и крышки к нему.
  3. Встроенные, по своей конструкции, они составляют единое целое с корпусом механизма.

Нельзя забывать и о количестве точек подачи масла. Существуют подшипники с одним и несколькими клапанами. Кроме, приведенных классов можно назвать еще один – по возможности регулирований подшипника.

Конструкция подшипников скольжения не отличается сложностью. В состав конструкции могут входить два кольца. Одно из них (внутреннее) вращается в процессе работы. Вместо, тел вращения в устройствах этого типа применяют втулки, изготовленные из антифрикционных материалов. Для повышения эффективной работы в подшипники закачивают смазочные материалы.

Существуют два типа подшипников скольжения — гидростатические и гидродинамические. В изделиях первого типа смазка подается от масляного насоса. Вторые в этом плане удобнее, они сами могут выступать в роли насоса. Смазка будет поступать в них за счет разности давления между его компонентами.

Подшипники скольжения могут иметь, сферическое, упорное и линейное исполнения. Первые подшипники применяют в тех узлах, где преобладают низкие скорости вращения вала. Главное достоинство такого исполнения подшипников – это возможность передавать вращение даже при значительных перекосах валов.

Подшипники упорного исполнения применяют для работы там, где преобладают поперечные усилия. Довольно часто их монтируют в турбинах и паровых машинах.

Схема подшипника упорного исполнения Подшипники упорного исполнения

Подшипники линейного исполнения исполняют роль направляющих. Кстати, их особенностью можно назвать их бесперебойную работу даже при постояннодействующих радиальных усилиях.

Подшипник линейного исполнения

Подшипник линейного исполнения

Многолетняя, если не многовековая практика использования подшипников скольжения позволяет сделать выводы о достоинствах и недостатках этих конструкций.

  • изделия этого класса обеспечивают надежную работу в условиях высоких скоростей вращения вала;
  • обеспечение серьезных ударных и вибрационных усилий;
  • довольно небольшие размеры;
  • подшипники этого типа допустимо устанавливать в устройствах работающие в воде;
  • некоторые модели позволяют выполнять настройку зазора и, таким образом, гарантируют точность установки оси вала.

Между тем, подшипникам скольжения присущи и определенные недостатки.

  • в процессе эксплуатации необходимо постоянно контролировать уровень смазки;
  • при недостаточной смазке и запуске возникает дополнительная сила трения;
  • более низкий в сравнении с другими классами подшипников КПД;
  • при производстве таких изделий применяют довольно дорогие материалы;
  • при работе, подшипники этого класса могут генерировать излишний шум.

Подшипники скольжения

Основная задача таких деталей – обеспечивать свободное трение между двумя сопряженными участками. Использовать их можно как для подвижных, так и для неподвижных поверхностей, что значительно увеличивает функциональные возможности применения.

Разновидности опорных узлов скольжения

Этот тип узловой части может быть разъемным и целостным. Первый состоит из двух вкладышей, установленных в полуотверстия основания и крышки. Они могут иметь толстую или тонкую стенку относительно наружного диаметра. Толщину определяет используемый материал. Например, тонкостенные чаще всего делают из легкой малоуглеродистой стали. Конструкция неразъемного предполагает особую сборку, при которой в детали высверливается отверстие, в которое запрессовывается металлическая втулка.

Разновидности

Наиболее распространенной является классификация, основанная на способности восприятия нагрузки по направлению. В этом случае устройства разделяют на 3 группы:

  • • Радиальные – принимающие перпендикулярную нагрузку с оси.
  • • Упорные – берут на себя весь груз.
  • • Радиально-упорные – сочетают свойства тех и других.

Существуют и еще несколько вариантов разделения узлов, но они являются скорее второстепенными.

Стандарты опор скольжения

Качество изготовления деталей, используемый в работе материал и другие условия производства описаны в Межгосударственном стандарте ISO и ГОСТе. Первый – соответствует международным требованиям, действующим в 165 странах мира. Второй – является внутренним для Российской Федерации. Все узловые части, представленные компанией «МПласт», проходят обязательную сертификацию на соответствие заявленным правилам.

Смазки подшипников скольжения

Этот вид призван обеспечивать свободное трение между двумя частями конструкции. Для нормальной работы используется один из 4-х типов смазочных материалов:

  • • Жидкие – различные синтетические и минеральные масляные жидкости для металлических опор или вода для неметаллических.
  • • Пластичные – изготавливаются из базового масла и загустителя.
  • • Твердые – используются в условиях сухого и граничного соприкосновения. В качестве материала чаще всего выбирается графит и дисульфид молибдена.
  • • Газообразные – требуются, когда конструкция работает под слабой нагрузкой, но в жарких условиях и с большим количеством оборотов.
Читайте так же:
Как проверить плотность аккумулятора с помощью ареометра

Преимущества и недостатки

Среди плюсов можно выделить их высокую надежность при работе на большой скорости и небольшие размеры. Что касается минусов, то отметим необходимость постоянной регулировки количества смазки, пониженный КПД и производство из дорогих материалов.

Где применяются устройства

Сфера применения приборов широка. Довольно часто их используют в высокоскоростной аппаратуре, паровых и турбинных установках, в оборудовании систем навигации и других точных приборах.

Магнитные опорные узлы

В отличие от других, такое устройство работает на принципе магнетической левитации. Это обеспечивает полную бесконтактность между двумя частями конструкции.

Описание

Элементы выполнены таким образом, что вал парит, не соприкасаясь с другими поверхностями. Для обеспечения надежной работы предусмотрено большое количество датчиков, координирующих все движения.

Разновидности

Выделяют две группы: активные и пассивные. В первый состав входит непосредственно подшипник и электронная система. Работа второй группы строится за счет присутствия постоянных магнитов. Они менее устойчивы, чем в случае с электронной системой контроля, поэтому применяются гораздо реже.

Применение

Использовать такие устройства можно в газовых центрифугах, турбомолекулярных насосах, в различных электромагнитных подвесах, в криогенной технике, в вакуумных приборах и других сложных механизмах.

Преимущества и недостатки

В качестве плюсов выделим износостойкость деталей и возможность их использования в агрессивной окружающей среде, в том числе в космосе. Минусы проявляются в нестабильности магнитного поля, из-за которого дополнительно в механизм встраиваются традиционные устройства качения или скольжения.

Роликовые подшипники и их разновидности

По своему строению эти опоры схожи с предыдущим типом, но вместо шариков здесь используется тело, по форме напоминающее ролик. Так прибор может принимать на себя более серьезную нагрузку.

Описание

Конструкция разработана таким образом, что она показывает стойкость к радиальному давлению, но при этом скорость прохождения ролика по дорожке ничуть не уступает шарикоподшипникам. Единственное, на что следует обратить внимание – осевая нагрузка. Чтобы сделать устройство более устойчивым к ней, элемент качения заменяют на конический.

Классифицируют этот тип по используемому телу. Отдельно выделяют:

  • • Цилиндрические.
  • • Конические.
  • • Игольчатые.
  • • Сферические.

Применение

Роликоподшипники часто используют в насосах, мощных редукторах, в железнодорожной промышленности и автопроме. Все виды роликовых подшипников в картинках представлены на сайте .

Примеры

Радиально-упорный шариковый подшипник

Радиально-упорный шариковый подшипник с четырёхточечным контактом

Самоустанавливающийся двухрядный радиальный шариковый подшипник

Радиальный шариковый подшипник для корпусных узлов

Радиальный роликовый подшипник

Радиально-упорный роликовый подшипник (конический)

Самоустанавливающийся радиальный роликовый подшипник

Самоустанавливающийся радиально-упорный роликовый подшипник

Самоустанавливающийся двухрядный радиальный роликовый подшипник с бочкообразными роликами(сферический)

Упорный шариковый подшипник

Упорный роликовый подшипник

Ролики и сепаратор упорного игольчатого подшипника

Магнитные подшипники

Магнитные подшипники, которые все чаще применяют в различных машинах и механизмах работает на основании принципа магнитной левитации. В результате реализации этого принципа в подшипниковой опоре отсутствует контакт между валом и корпусом подшипника. Существуют активное исполнение и пассивное.

Активные изделия уже в массовом производстве. Пассивные, пока еще находятся на стадии разработки. В них, для получения постоянного магнитного поля применяют постоянные магниты типа NdFeB.

Использование магнитных подшипников предоставляет потребителю следующие преимущества:

  • высокая износостойкость подшипникового узла;
  • применение таких изделий, возможно, в агрессивных средах в большом диапазоне внешней температуры.

Бесконтактный магнитный подшипник

В то же время использование таких узлов влечет за собой некоторые сложности, в частности:

В случае пропадания магнитного поля, механизм неизбежно понесет повреждения. Поэтому для бесперебойной и безаварийной работы проектировщики применяют так называемые страховые подшипники. Как правило, в качестве страховочных применяют подшипники качения. Но они в состоянии выдержать несколько отказов системы, после этого требуется их замена, так будут изменены их размеры.

Создание постояннодействующего, а главное, устойчивого, магнитного поля сопряжено с созданием больших и сложных систем управления. Такие комплексы вызывают сложности с ремонтом и обслуживанием подшипниковых узлов.

Излишнее тепловыделение. Оно обусловлено тем, что обмотка нагревается в результате прохождения через нее электрического тока, в некоторых случаях, такой нагрев недопустим и поэтому приходится устанавливать системы охлаждения, что, разумеется, приводит к усложнению и удорожанию конструкции.

Подшипники — назначение и классификация, виды подшипников и описания

Подшипники предназначены для поддержания в определенном положении оси вращающихся или колеблющихся элементов машины и обеспечивают их беспрепятственное движение. Реакция происходит в точке контакта вала в подшипнике. В зависимости от направления этой реакции, часть вала, к которой он опирается в подшипнике, называется шейкой или пяткой, в зависимости от того, направлены ли действующие силы радиально (на шейку) или в направлении оси (на пятку). Более подробно о подшипниках можно почитать здесь https://katiks.ru/.

Читайте так же:
Как запустить дисковод на компьютере

Подшипники могут быть классифицированы в зависимости от трения и нагрузки, которую они воспринимают

  1. По типу трения подшипники делятся на: подшипники скольжения — опорная поверхность вала или осей скользит по рабочей поверхности подшипника; качения — трение скольжения заменяется трением качения с использованием промежуточных тел качения.
  2. В соответствии с воспринимаемой нагрузкой подшипники являются: радиальными — они воспринимают только радиальную нагрузку; осевые — воспринимают только осевую нагрузку; радиально-осевые — воспринимают радиальные и осевые нагрузки.
  3. По возможности следовать или нет наклону линии упругого вала — саморегулирующиеся или не саморегулирующиеся.

Типы подшипников

1. Подшипники скольжения

Подшипники скольжения — это опоры для вращающихся элементов машин и агрегатов, работающих в условиях трения, совместно с рабочей жидкостью (маслом или газообразным веществом).

Подшипники скольжения являются одним из старейших элементов машин, используемых для создания подшипниковых узлов в общем машиностроении. Как таковые, они претерпели большое развитие и охватывают очень широкий спектр современного машиностроения и приборостроения, хотя их широкое использование ограничено.

Тем не менее, они сохранили некоторые важные области, где они имеют преимущественное или равное применение с подшипниками качения: подшипники, которые из-за технологических требований при установке должны быть двухкомпонентными (для коленчатых валов и т. д.), подшипники особо тяжелых валов, для которых требуется индивидуальное производство подшипников качения.

В зависимости от воспринимаемой нагрузки подшипники скольжения бывают: радиальные — воспринимают только радиальную нагрузку; осевые — воспринимать только осевую нагрузку; радиально-осевые — воспринимают радиальные и осевые нагрузки. Шейки валов и осей, установленные в подшипниках скольжения, могут иметь различные геометрические формы вращения. На практике цилиндрические, бочкообразные или конические шейки в основном используются для облегчения производства. Каблуки цельные, в форме кольца, в форме гребня и сферические.

В зависимости от характера трения подшипники скольжения подразделяются на:

  • подшипники скольжения, рабочие поверхности которых касаются непосредственно шейки (пятки) вала или вала и работают в режиме смешанного трения. Во время смешанного трения слой масла, расположенный между двумя поверхностями скольжения, местами нарушается и обеспечивает их прямой контакт, что вызывает сухое трение и его износ;
  • подшипники скольжения, рабочие поверхности которых отделены от поверхностей вала масляным слоем, образованным при вращении вала (вала), и работают в режиме жидкостного трения — гидродинамических подшипников. Эти подшипники работают без внешнего источника давления;
  • подшипники скольжения, рабочие поверхности которых отделены от поверхностей вала масляным слоем под давлением, создаваемым внешним источником давления — гидростатические подшипники;
  • подшипники скольжения, рабочие поверхности которых отделены от вала (оси) при помощи воздуха (газа) под давлением, создаваемым внешним источником давления — аэростатические подшипники;
  • подшипники скольжения, рабочие поверхности которых отделены от поверхностей вала с помощью слоя сжатого воздуха (газа), создаваемого вращением вала на высокоскоростных аэродинамических подшипниках. Подшипники этого типа также работают с внешним источником давления для разгрузки подшипника при запуске и останове;
  • подшипники скольжения, рабочие поверхности которых отделены от вала (оси) вследствие магнитного равновесия внешней нагрузки.

2. Подшипники качения

Одним из основных требований к подшипникам является минимальный коэффициент трения. В этом отношении газовые подшипники имеют несомненное преимущество перед подшипниками качения (потери в газовых подшипниках обусловлены незначительным внутренним трением в газовом слое), но они значительно уступают последним с точки зрения грузоподъемности.

Трение в подшипнике на продукт реакции в опоре и радиус отверстия подшипника достигает 0,002 — для однорядных шарикоподшипников при радиальной нагрузке и 0,01 для игольчатых и конических роликоподшипников.

Преимущество подшипников качения состоит в том, что они позволяют заменить трение скольжения трением качения. Это упрощает систему смазки, уменьшает вероятность выхода из строя подшипника в случае короткого перерыва в смазке (в случае внезапного изменения нагрузки и скорости). Конструкция подшипников позволяет производить их в больших количествах в качестве стандартных изделий, что делает их производство экономически эффективным. По сравнению с подшипниками скольжения ролики имеют меньшие размеры в осевом направлении (в 2-3 раза), что обеспечивает ремонтопригодность агрегата и оценку его остаточной прочности.

К недостаткам подшипников качения относятся:

  • относительно большие размеры в радиальном направлении;
  • низкая радиальная устойчивость и, как следствие, склонность к колебаниям вала вследствие прохождения тел качения через нагруженную зону;
  • ограниченная скорость, связанная с кинематикой и динамикой тел качения (от центробежных сил, гироскопических моментов и т. д.);
  • низкая работоспособность при вибрационных и ударных нагрузках и при работе в агрессивных средах;
  • большее сопротивление вращению из-за трения между телами качения, подшипниковыми браслетами и сепаратором.
Читайте так же:
Как и чем сверлить кафельную плитку

Классификация подшипников качения

Подшипники качения можно классифицировать по следующим характеристикам:

Подшипники скольжения – достоинства и недостатки

Еще столетие назад подшипники скольжения были наиболее распространенными опорами в промышленности и транспортной сфере. Простое изготовление, неприхотливость в обслуживании и ремонте, а также доступная цена, обеспечивали спрос на этот вид продукции еще долгое время после того, как на рынке деталей для механизмов появился большой выбор изделий, использующих в работе качение. Но совершенствование роликовых и шариковых подшипников привело к тому, что опора скольжения стала существенно уступать по своим эксплуатационным характеристикам аналогам с телами качения. При этом серийное производство и применение современных сплавов сделало разницу в цене, между этими двумя видами, совсем несущественной, что заставило промышленность и транспорт массово переходить на более эффективные решения. Несмотря на это, подшипники скольжения не исчезли как вид и продолжают использоваться и сегодня.

Достоинства подшипников скольжения

Существуют случаи, когда подшипники, использующие скольжение, не только желательны, но и незаменимы. Они находят широкое применение в агрегатах, угловая скорость вращения которых очень высока, например в турбореактивных двигателях. Также эти изделия востребованы в узлах вращения, к которым предъявляются особенно строгие требования в центровке осей.

Среди преимуществ подшипников скольжения нужно отметить:

• Отличное сопротивление высоким радиальным нагрузкам;
• Разъемная конструкция, упрощающая установку и обслуживание;
• Неприхотливость к условиям эксплуатации (могут работать в условиях сильного загрязнения, агрессивных средах);
• Устойчивость к вибрациям;
• Низкий уровень шума при работе;
• Небольшие радиальные размеры;
• Простое изготовление и ремонт.

Разъемная конструкция таких узлов, а также их виброустойчивость, делает их незаменимыми при изготовлении двигателей внутреннего сгорания. Подшипники скольжения применяются в месте, где коленчатый вал соединяется с шатунами.

Недостатки подшипников скольжения

Работоспособность механизма во многом зависит от надежности и долговечности опор валов и осей. К сожалению, высокий уровень стойкости к износу не характерен для подшипников скольжения. Так как в этих деталях происходит трение сопряженных поверхностей, нагрузка на вкладыши и цапфы очень высока и элементы быстро выходят из строя. Их замена не является сложной, но, тем не менее, требует выведения механизма из эксплуатации. Кроме этого, минусами этих деталей являются:

• Потери на трение при пуске механизма и при некачественной смазке;
• Высокий расход смазочных материалов;
• Подшипникам такого типа требуется постоянный уход (очистка, замена вкладышей);
• Большие осевые размеры изделия.

Также немаловажным моментом является то, что подшипники скольжения массово не производятся и подобрать их под ось или вал бывает совсем непросто. Чаще всего, когда конструируется машина, в которой используются опоры такого типа, также проектируют и их, индивидуально для каждого случая.

Подшипники скольжения или качения?

В том случае, если есть возможность обеспечить постоянную подачу смазки в подшипник скольжения, его установка может быть более привлекательной, чем применение изделия с телами качения. В случае с подшипниками большого диаметра, разница в стоимости деталей этих двух типов может быть очень существенной. Поэтому, если есть необходимость удешевить узел и нет противопоказаний для применения скользящей опоры, используют именно ее. Также стоит сделать выбор в пользу такого подшипника, если работа механизма происходит в сильно загрязненной среде. Опоры с телами качения гораздо более чувствительны к попаданию в рабочие зоны грязи и воды, поэтому, в таких условиях, менее надежны.

Основной причиной отказаться от опоры скольжения может стать ее требовательность к смазочному режиму. Подшипники качения не так требовательны к смазке и менее склонны к перегреву при ее нехватке. Их обслуживают согласно графику или по мере необходимости. Подшипник скольжения, при прекращении подачи масла, быстро нагревается, заклинивает и разрушается. Поэтому применение таких деталей создает еще и проблему качественного обеспечения узла смазочным материалом, решение которой влечет дополнительные расходы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector