Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прибор для проверки любых транзисторов

Прибор для проверки любых транзисторов

Это очередная статья, посвященная начинающему радиолюбителю. Проверка работоспособности транзисторов пожалуй самое важно дело, поскольку именно нерабочий транзистор является причиной отказа работы всей схемы. Чаще всего у начинающих любителей электроники возникают проблемы с проверкой полевых транзисторов, а если под рукой нет даже мультиметра, то проверить транзистор на работоспособность очень трудно. Предложенное устройство позволяет за несколько секунд проверить любой транзистор, независимо от типа и проводимости.

Прибор для проверки любых транзисторов

Устройство очень простое и состоит из трех компонентов. Основная часть — трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение.
Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т. п.) база через базовый резистор 100 ом идет на одну из выводов (левый или правый вывод) трансформатора, средняя точка трансформатора (отвод) подключен к плюсу питания, эмиттер транзистора подключается к минусу питания, а коллектор к свободному выводу первичной обмотки трансформатора.

Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора. Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание.
Устройство по идее является простейшим блокинг — генератором. Питание 3,7 — 6 вольт, отлично подойдет всего один литий — ионный аккумулятор от мобильного телефона, но с аккумулятора заранее нужно выпаять плату, поскольку эта плата отключает питание потребление тока превышает 800 мА, а наша схема может в пиках потреблять такой ток.
Готовое устройство получается достаточно компактным, можно поместить в компактный пластмассовый корпус , например от конфет типа тик- так и у вас будет карманный прибор для проверки транзисторов на все случаи жизни.

Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия

Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.

Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:

— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.

— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.

Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:

Читайте так же:
Как сделать вакуум своими руками

— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;

— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.

Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.

Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:

— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)

— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)

Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.

Принципиальное отличие логики PNP от NPN

Отличие логики датчиков PNP от NPN

Чаще применяется вариант с выходом на основе транзистора PNP, поскольку большее распространение получила схемотехника с общим минусовым проводом источника питания. Выходное напряжение зависит от напряжения питания датчика и обычно находится в узком диапазоне, например, 20…28 В.

Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.

Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:

Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым). Отсюда обозначения NO (НО) – normally open (нормально открытый) и normally closed (нормально закрытый).

Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:

— внесение изменений в конструкцию, инициирующую датчик

— внесение изменений в программу (смена алгоритма)

— переключение выходной функции датчика (при наличии такой возможности)

Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.

Замена датчика PNP на NPN

Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.

Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.

Читайте так же:
Дымогенератор для холодного копчения конструкция

Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.

Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.

Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути.

Схемы подключения датчиков PNP к устройству со входом NPN и наоборот

Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.

Основы электроники для чайников: что такое транзистор и как он работает

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Читайте так же:
Глубинная катушка для металлоискателя своими руками

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

РЕМОНТ БП ПК – НИЗКОВОЛЬТНЫЕ ЦЕПИ

Итак, продолжаем цикл статей от Elwo.ru, посвященных ремонту блоков питания АТХ. В этой статье мы разберем, в основном низковольтные и выходные цепи блока питания, а также снова коснемся проблем с высоковольтной частью. Итак, у нас есть ШИМ контроллер, их бывает несколько распространенных моделей микросхем, применяемых в блоках питания АТХ, это и широко распространенная TL494, и другие подобные ей микросхемы, по типу работы.

ШИМ контроллер блоков питания Powerman

Так например выглядит ШИМ контроллер брендовых блоков питания Powerman. А вот так он обозначается на схеме:

ШИМ контроллер Powerman - схема

Выделено красным. Рядом с выводами 8 и 9 мы видим надписи OP1 и OP2. C чем же они соединены? Посмотрев на схему блока питания, вот она целиком, она кликабельна:

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ

Мы видим, что эти два выводы, соединены с базами двух транзисторов, также помеченных на схеме OP1 и OP2. В их обвязке мы видим, также ставшие стандартными в подобных схемах, защитные диоды, между коллектором и эмиттером. Они защищают наши транзисторы от импульсов, выбросов, которые бывают при работе на индуктивную нагрузку, какой у нас и являются обмотки трансформатора Т2.

Читайте так же:
Как убрать лишний припой

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ, СХЕМА

Эти транзисторы называются транзисторами раскачки, почему же они так называются? А потому что силовые транзисторы, выделенные синим, мы не можем подключить, по соображениям схемотехники напрямую, на выхода ШИМ контроллера, и нам удобнее управлять нашими высоковольтными ключами, Q3 и Q4, через эти своего рода промежуточные транзисторы. Второй причиной является то, что силовые транзисторы, ключи, часто пробиваются высоким напряжением, бывает что и на базу, и все 3 вывода оказываются у нас, пусть и на очень короткое время, пока не сгорит предохранитель, под высоким напряжением. Нежный ШИМ контроллер этого очень не любит), и сразу откажется работать. Все необходимые данные, а также его распиновку и назначение выводов, мы как обычно, находим в даташите:

ШИМ контроллер даташит

А ШИМ контроллер, если требуется его замена, у него будет необходимо подбирать впоследствии номиналы обвязки, это не так легко сделать, потребуются измерения, поэтому мы и имеем такое решение. Как уже было сказано в предыдущих статьях, если у нас летят высковольтные ключевые транзисторы, не пытайтесь найдя транзистор в КЗ, коротком замыкании, сразу же заменив транзистор, включать в сеть, не проверив его обвязку, те детали, которые обеспечивают его работу, и находятся на схеме рядом с ним. Или вы рискуете попасть на покупку нового транзистора, а цены на них сейчас в радиомагазинах, отнюдь не радуют. Итак, вернемся к нашим низковольтным цепям. Если у нас блок питания пытается стартовать, кулер дергается, пытается раскрутиться, но не может и останавливается, значит у нас срабатывает защита блока питания, и проблему нужно искать в низковольтной части, возможно и в выходных цепях блока питания, после силового трансформатора. Посмотрите на следующий рисунок:

РЕМОНТ БП ПК - ДЕТАЛИ

Здесь мы видим два алюминиевых радиатора, на них, на одном из них, обычно всегда ближнем к “бочонкам”, электролитическим конденсаторам, расположены высоковольтные транзисторы, ключи, которыми и управляют наши транзисторы раскачки, и мосфет или обычный биполярный транзистор. Все они находятся под высоким напряжением, ни в коем случае не касайтесь их руками, при проведении измерений на “горячую”, во включенном блоке питания, это опасно для жизни! Это касается и самих больших “бочонков” электролитических конденсаторов, они сохраняют заряд еще какое-то время и после выключения, несмотря на то, что в их цепях и установлены резисторы, для их разряжения. На втором же радиаторе, дальнем от “бочонков”, мы видим вот такие штуки, как на фото, внешне порой ничем не отличающиеся от мощных ключей – транзисторов, но это абсолютно другие детали.

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ

Это диодная сборка Шоттки, или два мощных импульсных диода, которые соединены катодами. Что мы и видим на нанесенном обозначении, на корпусе диода. Диоды Шоттки ни в коем случае нельзя менять, на обычные выпрямительные диоды, даже подходящие по току, они не предназначены для работы в таких цепях, и будут сильно греться.

диодная сборка Шоттки - схема

На схеме у нас их три, и находятся они, как уже можно было догадаться, даже не глядя на схему, по цепям +3.3 вольта, +5 Вольт, и +12 Вольт, иначе говоря по всем выходным цепям, способным выдавать болшие токи, кроме маломощных -5 и -12 вольт. Итак, посмотрим на схему, с вторичных обмоток силового трансформатора, напряжение идет на аноды диодной сборки. Как нам известно любой диод, в том числе и Шоттки, мы можем проверить мультиметром, в режиме звуковой прозвонки. С диодами Шоттки значения будут правда не 500-600, как обычно бывает при проверке выпрямительных диодов, а порядка 200, потому что у них меньшее падение напряжения. К чему это рассказываю? Посмотрите внимательно на схему, на все аноды диодных сборок, параллельно им подключены вторичные обмотки выходного трансформатора. Что это значит? А это значит что оба крайних вывода, аноды, у нас будут звониться на звуковой прозвонке, или на измерении сопротивления, как низкоомное сопротивление, и это ничуть не означает, что диодная сборка у нас пробита, между анодами. В чем мы и можем убедиться, прозвонив диоды сборки по отдельности, в режиме звуковой прозвонки. Куда же идут выхода с диодных сборок?

Читайте так же:
Домкрат пресс для сока

РЕМОНТ БП ПК - ДРОССЕЛИ

На дроссель, и затем на фильтры. Те самые конденсаторы 2200-3300 мкФ, которые у нас любят так часто дуться), и в результате наш блок питания не стартует, или работает не стабильно. На схеме конденсаторы фильтров выделены синим. И наконец после этих фильтров, напряжение приходит уже на наш разъем 20-24 Pin, Молексы и все остальные разъемы. А теперь, в качестве бонуса, я расскажу о поломке блока питания которая встречается редко, но тем не менее, как оказалось, все же бывает. Включаю блок питания, как обычно, клавишным выключателем на задней стенке, замыкаю PS-ON на GND, и ничего не происходит… Вскрываю крышку, предохранитель не почерневший, проволочку видно, звоню для большей уверенности, все звонится. Звоню диодный мост, мосфет, выходные транзисторы, Y- конденсаторы, большой красный конденсатор, на 250 вольт, и остальные подобные. Все в идеале. Они все показаны на рисунке:

РЕМОНТ БП ПК - ФИЛЬТРЫ СХЕМЫ

Тут приходит в голову мысль, прозвонить термистор, который с виду кажется в норме, эта деталь защищает диодный мост от бросков тока, и ставится последовательно с предохранителем, а точнее сразу после него. На схеме выделено фиолетовым. Не путайте с Y – конденсаторами, выделено синим, внешне они немного похожи.

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ

Пытаюсь его слегка отогнуть, и он отгибается, вернее его большая часть), а одна нога остается висящей в воздухе. В течение последующих двух минут, выпаиваю термистор с донора, впаиваю в схему, все работает, тесты проходит, все в идеале. И убеждаюсь в справедливости поговорки, что ремонт техники, состоит на 95% в диагностике неисправности… Хотя один или два электролитических конденсатора, я предварительно все же вроде бы заменил тогда. Вот так термистор выглядит на плате, обычно он находится рядом с предохранителем.

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ

После ремонта 5-10 блоков, все последующие, за исключением конечно тяжелых случаев, а они бывают и у меня, обычно ремонтируются по ставшей уже отработанной схеме. Большую часть распространенных простых поломок, которые случаются у блоков питания АТХ мы разобрали, и которые можно устранить в домашних условиях, без применения осциллографа, или других дорогих приборов. Которых обычно и не бывает в мастерской у домашнего мастера, мы разобрали в этой, и предыдущих статьях. Для проведения большинства ремонтов, нам достаточно было обычного мультиметра, и еще также очень желателен для облегчения работы ESR метр. Без которого, впрочем, вполне можно обойтись, если знать схемотехнику блоков питания АТХ, и менять все электролитические конденсаторы на новые в проблемном узле.

Кстати, насчет конденсаторов, настоятельно рекомендую менять электролитические конденсаторы, на другие только с обозначением 105С, на корпусе. Конденсаторы на которых написано 85С, даже новые, и подобные, имеющие низкую, предельно допустимую температуру работы, недолго прослужат в закрытом корпусе, и замена на них допустима только на время тестирования.

Всем удачных ремонтов, специально для "Электрические схемы" – AKV.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector