Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закалка и отпуск стали 65Г

Закалка и отпуск стали 65Г

Конструкционная высокоуглеродистая сталь марки 65Г, поставляемая соответственно техническим требованиям ГОСТ 14959, представляет собой сталь рессорно-пружинной группы. Она должна сочетать в себе высокую поверхностную твёрдость (для чего в её состав вводится до 1% марганца) и повышенную упругость. Все эти характеристики обеспечиваются в результате выполнения надлежащей термической обработки изделий, изготовленных из рассматриваемой стали.

Закалка ТВЧ

Исходный химсостав стали и требования к деталям, изготавливаемым из неё

Относясь к разряду экономнолегированных, сталь 65Г относительно дешёвая, что обуславливает её широкое и эффективное применение. В числе главных её компонентов находятся:

  1. углерод (в пределах 0,62…0,70 %);
  2. марганец (в пределах 0,9…1,2 %);
  3. хром и никель (до 0,25…0,30 %).

Все остальные составляющие – медь, фосфор, сера и т.д. – относятся к примесям, и допускаются в химическом составе данного материала в количествах, ограничиваемых госстандартом.

Рессорно-пружинные стали

При достаточной твёрдости (например, после поверхностной нормализации она должна составлять не менее 285 НВ), и прочности на растяжение (не ниже 750 МПа), сталь 65Г обладает достаточно высокой для своего класса ударной вязкостью – 3,0…3,5 кг∙м/см 2 . Это даёт возможность использовать материал для производства ответственных деталей подъёмно-транспортного оборудования (в частности, ходовых колёс мостовых кранов, катков), а также пружинных шайб и пружин неответственного назначения.

Стоит отметить, что детали пружин, изготовленные из стали 65Г, плохо свариваются, а также не могут противостоять периодически возникающим растягивающим напряжениям (относительное удлинение не превышает 9%), а потому не подлежат применению в неразъёмных конструкциях машин и механизмов. При проведении процессов холодного пластического деформирования сталь становится весьма малопластичной уже при малых (до 10%) деформациях, поэтому, при необходимости изготовления из неё пружин больших размеров, приходится применять нагрев исходных заготовок, даже под листовую штамповку. Впрочем, и в горячем состоянии предельные степени деформации стали 65Г не превышают 50…60%.

Химический состав стали 65Г

Химический состав стали 65Г

Несмотря на то, что в ходе деформационного упрочнения предел временного сопротивления материала увеличивается до 1200…1300 МПа, этих показателей недостаточно для того, чтобы придавать конечной продукции (например, пружинам) необходимую эксплуатационную прочность. Поэтому закалка и отпуск стали 65Г обязательны.

Оптимальные технологические процессы термической обработки материала

Выбор режима термообработки диктуется производственными требованиями. В большинстве случаев для придания надлежащих физико-механических характеристик используют:

  • нормализацию;
  • закалку с последующим отпуском.

Температурно-временные параметры термической обработки и выбор её вида зависят от исходной структуры стали. Данный материал принадлежит к сталям доэвтектоидного типа, поэтому в его составе при температурах выше нижней точки аустенитного превращения — 723 °С — на 30…50 °С содержится аустенит в виде твердой механической смеси с незначительным количеством феррита. Поскольку аустенит – более твёрдая структурная составляющая, чем феррит, то интервал закалочных температур для стали 65Г будет существенно ниже, чем для конструкционных сталей с более низким процентным содержанием углерода. Таким образом, температурный интервал закалки стали данной марки должен находиться в пределах не более 800…830 °С.

Технология закалки

Примерно такой же температурный диапазон применяют и для проведения нормализации – технологической операции термообработки, которую используют с целью исправления структуры материала изделия, для снятия внутренних напряжений, а при последующей механической обработке полуфабриката – и для улучшения его обрабатываемости.

Поскольку ударная вязкость у закалённой стали 65Г – пониженная, то после закалки изделия из неё, в частности, пружины, обязательно должны пройти высокий отпуск. Происходящие в ходе отпуска мартенситно-аустенитные превращения снижают уровень возникающих во время закалки внутренних напряжений, снижают хрупкость и несколько поднимают показатели ударной вязкости.

Переход высокого отпуска исключается из режима только в том случае, когда заготовка проходит изотермическую закалку. В результате высокого отпуска сталь 65Г приобретает структуру сорбита, характерными особенностями которой являются мелкодисперсность структуры при сохранении изначально высоких показателей твёрдости, что полностью соответствует эксплуатационным требованиям.

Режимы закалки стали 65Г

Для соблюдения тех характеристик, которые заданы техническими условиями на эксплуатацию деталей, при выборе режима закалки учитывают следующие составляющие:

  1. способ и оборудование для нагрева изделий до требуемых температур;
  2. установление нужного температурного диапазона закалки;
  3. выбор оптимального времени выдержки при данной температуре;
  4. выбор вида закалочной среды;
  5. технологию охлаждения детали после закалки.
Читайте так же:
Дизайнерские изделия из металла

Интенсивность нагревания предопределяет качество получаемой структуры. Для малолегированных сталей процесс ведут достаточно быстро, поскольку при этом минимизируется риск обезуглероживания материала, и, как следствие, потеря деталью своих прочностных параметров. Однако чересчур быстрый нагрев вызывает к жизни иные неприятности. В частности, для крупных деталей, с большими перепадами поперечных сечений это может вызвать неравномерное прогревание металла, с перспективой дальнейшего появления закалочных трещин, выкрашивания углов и кромок.

Температура заготовки в зависимости от цвета при нагреве

Температура заготовки в зависимости от цвета при нагреве

Для достижения максимальной степени равномерности нагрева сталь сначала подогревают в предварительных камерах термических печей до температур, несколько ниже закалочных – от 550 до 700 °С, и только потом деталь направляется непосредственно в закалочную печь. Быстрее всего нагрев осуществляется в расплавах солей, медленнее – в газовых печах, и ещё медленнее – в электрических печах. Именно поэтому поверхностная закалка изделий из стали 65Г в индукционных печах выполняется достаточно редко. Индуктор, как закалочный агрегат, используется лишь для изделий с малым поперечным сечением. При выборе вида нагревательного устройства важен также состав атмосферы, которая в нём создаётся. В частности, для термических печей, работающих на газе, стараются всемерно снижать длительность пребывания детали в печи, поскольку в противном случае происходит выгорание части углерода поверхностного слоя.

Исходя из нормируемой для стали 65Г температуры закалки в 800…820 °С, предельная величина обезуглероженного слоя не должна быть более 50…60 мкм.

Температурный диапазон закалочных температур может корректироваться в зависимости от конфигурации изделия. Например, если деталь имеет сложные очертания, малые габариты и изготовлена из листового металла, то оптимальной температурой будет нижняя граница указанного выше диапазона. Управляя температурой закалки (например, с помощью автоматических датчиков температуры), можно менять толщину закалённого слоя и величину зоны, которая прокалилась менее остальных. К подобным техническим решениям прибегают, когда различные части детали работают в разных эксплуатационных условиях.

Сталь 65Г не боится перегрева, однако при закалке по верхнему значению температурного диапазона ударная вязкость материала начинает уменьшаться, что сопровождается ростом зерён в микроструктуре.

Для снижения коробления деталей, которые имеют тонкие рёбра и перемычки, пользуются нагревом в соляных закалочных ваннах. Чаще применяют расплав хлористого натрия, а для раскисления в рабочий объём ванны добавляют буру или ферросилиций.

Выдержка при закалке изделий из стали 65Г при заданном температурном интервале происходит до тех пор, пока полностью не произойдёт перлитное превращение. Этот процесс зависит от размера поперечного сечения детали и способа нагрева. Для наиболее употребительных случаев можно воспользоваться данными таблицы:

Временя нагрева и выдержки в зависимости от закалочной среды и габаритов заготовки

Наибольший габаритный размер детали, ммЗакалка в пламенной печиЗакалка в электропечи
Время нагрева, минВремя выдержки, минВремя нагрева, минВремя выдержки, мин
До 5040105010
До 10080208820
До 1501203013030
До 2001604017540

Охлаждение изделий после закалки производят не в воду, а в масло, это позволяет избежать возможной опасности растрескивания.

Технология последующего отпуска

Как уже указывалось, для получения структуры сорбита изделия из стали 65Г подвергают только высокому отпуску при температурах 550…600 °С, с охлаждением на спокойном воздухе. Для особо ответственных деталей иногда проводят дополнительный низкий отпуск. Диапазон его температур — 160…200 °С, с последующим медленным охлаждением на воздухе. Такая технология позволяет избежать накапливания термических напряжений в изделии, и повышает его долговечность. Для отпуска можно применять не только пламенные, но и электрические печи, оснащённые устройствами для принудительной циркуляции воздуха. Время выдержки изделий в таких печах — от 110 до 160 мин (увеличенные нормативы времени соответствуют деталям сложной конфигурации и значительных поперечных сечений).

В качестве рабочих сред при закалке стали 65Г не рекомендуется использовать воду и водные растворы солей. Ускорение процесса охлаждения, которое вызывает вода, часто сопровождается неравномерностью прокаливания.

Итоговый контроль качества закалки состоит в оценке макро- и микроструктуры металла, а также в определении финишной твёрдости изделия. Поверхностная твёрдость продукции, изготовленной из стали 65Г, должна находиться в пределах 35…40 НRC после нормализации, и 40…45 НRC – после закалки с высоким отпуском.

Читайте так же:
Как определить сечение проволоки

Простой способ изготовления пружин

Процесс изготовления.
Перед Вами первая часть этого приспособления для накручивания пружин. Это короткий отрез дюймовой металлической трубы, к которой сбоку приварен кусок стального уголка. Эта часть фиксируется в тисках.

Не волнуйтесь, если у Вас нет навыков сварки, или сварочного аппарата, потому что по большому счёту этот элемент не столь уж и важен. В конце статьи автор покажет, как можно обойтись без него.

Вторая часть этого приспособления представляет собой отрез полудюймовой трубки с отверстием, просверлённым во второй стороне, и тройником, который навинтили на один из концов трубы. Это обычный тройник с ¾ на ½ дюйма, который здесь выполняет функцию держателя для рукояти.

Конечно же, можно использовать трубы или стальные прутки меньших или больших диаметров при изготовлении пружин. От этого зависит их конечный диаметр. То же касается и самой проволоки.

Отверстие, просверленное в трубе, должно захватывать конец проволоки, и удерживать его во время вращения трубы.













Что касается самих кончиков пружины, то их можно либо откусить, если они неаккуратно изогнуты, либо нагреть горелкой, и загнуть под нужным углом.

Не рекомендуется нагревать до высокой температуры внутренние кольца, т. к. это может изменить структуру металла, позволяющую пружине сохранять нужную форму.










Всем хорошего настроения, удачи, и интересных идей!

Авторское видео можно найти здесь.

Как правильно закалить пружину

Технология изготовления пружин играет важную роль и имеет большое значение для их беспроблемной долгосрочной эксплуатации. Упругие элементы – это высокотехнологичные изделия, требующие наличия квалификации и опыта от инженеров-конструкторов и технологов, а также хорошего парка оборудования на предприятии-производителе.

От того, насколько правильными были расчеты пружины, подбор материала с учетом требуемых характеристик и особенностей ее применения, а также используемые технологии и точность изготовления, зависит работа целого агрегата, где эта деталь будет комплектующей.

Витые пружины сжатия: особенности конструкции и эксплуатации

Данный тип пружин в процессе эксплуатации воспринимает нагрузки, прилагаемые в продольно-осевом направлении. Пружины сжатия изначально имеют просветы между витками, приложение внешней силы приводит к деформации, характеризующейся уменьшением длины изделия, и ограничивается тем моментом, когда витки соприкасаются. При отмене воздействия пружина должна восстановить свою форму и геометрические размеры, какими они были до приложения нагрузки.

Основными размерами, определяющими вид отдельной детали, являются:

  • — Диаметр проволоки (прутков).
  • — Количество витков.
  • — Шаг навивки.
  • — Диаметр изделия.

Наиболее распространенными являются цилиндрические винтовые пружины сжатия, у которых диаметр изделия одинаков по всей длине. Эти детали широко используются в разных отраслях промышленности: приборо- и машиностроении, горношахтной отрасли, газонефтедобыче, других.

Вообще же пружины сжатия могут иметь не только цилиндрическую форму, но и конусную, бочкообразную, более сложную. Шаг витков может быть постоянный и переменный, а навивка – по или против направления движения часовой стрелки.

Это вносит особенности в общепринятую технологию их изготовления.

Требования к пружинам

Чтобы выполнять свою работу эффективно и правильно, эти элементы должны обладать хорошей прочностью, пластичностью, упругостью, выносливостью и релаксационной стойкостью.

Достижение этих качеств возможно при соблюдении многих факторов, в том числе:

  • — Правильном выборе материала.
  • — Грамотно проведенных расчетах.
  • — Соблюдении технологии изготовления.

Качественные пружины должны соответствовать требованиям ГОСТ и техническому заданию конкретного заказчика.

Согласно стандарту предусмотрены три группы точности по контролируемым деформациям:

  • — С допускаемым отклонениями до 5% (+/-).
  • — До 10%.
  • — До 20%.

В соответствии с этим определены три группы точности по геометрическим параметрам.

Важное требование к этим деталям – чистота поверхности, здесь не допускаются царапины и другие дефекты, так как они приводят к снижению прочности и надежности.

Требования к материалу

Пружины для работы в определенных условиях выбираются по типоразмерам с учетом характера и величины нагрузок, характерных для условий эксплуатации. Надежность работы этих деталей определяется многими факторами, в том числе – качеством и структурным состоянием металла/сплава после термической обработки, наличием остаточных внутренних напряжений. Кроме того, важно металлургическое качество стали/ сплава. Так что долговечная беспроблемная эксплуатация начинается с выбора материала с определенным комплексом свойств.

Читайте так же:
Как тестером замерить емкость аккумулятора

Винтовые пружины сжатия в зависимости от размеров, выполняемой работы и других факторов изготавливаются из различных сталей/сплавов, в том числе из конструкционных рессорно-пружинных, нержавеющих, других.

Наиболее широко используемыми материалами можно назвать сталь 60С2А ГОСТ 14959-79, а также 50ХФА, 51ХФА, 60С2ХФА и аналогичные сплавы. Из нержавеющих самое широкое применение находит сталь 12Х18Н10Т.

Особенности технологии

В зависимости от предусмотренного назначения таких деталей и их спецификации уместно говорить об особенностях технологии их производства. Изготовление изделий из материалов, имеющих круглое сечение, может быть выполнено путем холодной или горячей навивки. Первым способом обычно изготавливают мелкие/средние пружины (из проволоки до 8 мм в диаметре), а вторым – крупные.

Кроме того, различие обуславливается применение различных видов термической обработки, что связано с необходимостью придать изделиям определенные характеристики.

Технология холодной навивки пружин без закалки

Навивка заготовок выполняется из проволоки, которая производителем заранее была подвергнута патентированию. Этот процесс представляет собой нагрев до температуры, превышающей интервал превращений, что отлично подготавливает материал для последующей холодной пластической деформации.

В сформированных навивкой заготовках обеспечиваются соответствие таких обязательных параметров, как:

  • Диаметр (этот параметр может быть внутренним, средним или наружным).
  • Количество предусмотренных витков (рабочих и общих).
  • Шаг и размер по высоте изготавливаемой детали (учитываются изменения, возможные в результате последующей обработки).
  • Правильность выполнения поджатия крайних витков.

Следующий этап – механическая отделка (торцевание), в процессе которой концевые витки (нерабочие) обрабатываются до образования поверхности, перпендикулярной оси. После этого производится термическая обработка – в данном случае – только низкотемпературный отпуск. Это придает постоянные упругие свойства и нивелирует созданные при навивке напряжения. Важный технологический момент – правильно определить температуру и время воздействия, ориентируясь на диаметр выбранного материала и требования стандартов. Термообработанные пружины подвергаются контролю и испытаниям на соответствие параметров требованиям чертежей.

Если по требованиям эксплуатации предусмотрено антикоррозионное покрытие, его нанесение становится последним этапом производства таких деталей. Только в том случае, если применялась гальваника, детали прогреваются для обезводороживания.

Технология холодной навивки пружин с закалкой и отпуском

Отличие данной технологии от описанной ранее начинается только на этапе термической обработки. Предыдущие действия: навивка и необходимая механическая обработка, выполняются точно так же.

Первым этапом термической обработки выполняется закалка: нагрев до определенной температуры (в зависимости от используемого материала), выдержка детали в течении указанного времени и принудительное (быстрое) охлаждение специальной среде, в основном в масле (иногда в воде, солевом растворе, других). Важно: для нагрева пружин под закалку их располагают горизонтально во избежание просадки под собственным весом.

Завершается термообработка отпуском – прогревом до сравнительно небольшой температуры и выдержкой строго определенное время для придания необходимых качеств.

После этого производится контроль таких параметров, как твердость, правильность сжатия/восстановления. Если предусмотрено технологией изготовления конкретной детали – применяется очистка пескоструем, упрочнение дробью, нанесение предотвращающего коррозию защитного покрытия.

Технология горячей навивки пружин с закалкой и отпуском

Горячая навивка подразумевает предварительный прогрев материала в электрической или газовой печи (возможный вариант – применение токов высокой частоты).

Подготовленная таким образом заготовка подвергается навивке согласно требованиям техзадания, разводке, а также торцовке и доводке геометрических значений с помощью инструментов. После этого деталь подается на закалку, параметры которой определяются используемым материалом, а потом – на отпуск.

По окончании термообработки производится контроль параметров и, если это необходимо, обжатие, заневоливание, другие дополнительные операции и обработка поверхности. Завершается процесс производства окрашиванием и сушкой.

Используемое оборудование и оснастка

Для изготовления пружин требуется различное оборудование, которое лучше всего соответствует требованиям каждого шага технологического процесса.

Навивка осуществляется или на специальных пружинонавивочных станках, или на переоборудованном для этих целей токарном оборудовании. Возможно также использование ручной оснастки или специализированных полуавтоматов. Дальнейшая обработка – механическая – осуществляется торцешлифовальными станками, а термическая – в закалочных и отпускных печах. Важно: для предотвращения коробления при термообработке используются специальные оправки. Для деталей небольшого размера они применяются при отпуске, а большие проходят закалку на оправке.

Контроль качества также проводится на специальном, предназначенном именно для этого процесса оборудовании.

Читайте так же:
Как узнать емкость автомобильного аккумулятора

Пружина. Виды и применение. Жесткость и нагрузка. Особенности

Пружина – упругий, обычно витой элемент механизмов, отвечающий за возврат приложенного усилия. В зависимости от способа навивки работает в направлении сжатия или растяжения.

Виды пружин
По конструктивному признаку осуществляется классификация пружин на несколько разновидностей:
  • Винтовые.
  • Торсионные.
  • Спиральные.
  • Тарельчатые.
  • Волновые.

Винтовые являются самыми широко распространенными. Они имеют форму трубки. Элемент получают методом навивки проволоки или прута на цилиндрический шаблон. После чего заготовка поддается закалке и отпуску. В зависимости от способа навивки зависит направление работы пружины. Наличие зазоров между витками позволяет ее использовать как элемент сжатия. Примером являются пружины в шариковых ручках, подвесках автомобилей, мототранспорта. При плотной навивке пружина срабатывает на растяжения. Такие элементы имеют на краях проушины зацепы. Их используют в механизмах автоматического закрывания двери.

Vintovye pruzhiny

Торсионные имеют аналогичное устройство, что и винтовые. Однако они устроены так, чтобы срабатывать на кручение и изгиб. Концы таких пружин сделаны удлиненными для зацепа при установке. При воздействии на скручивание элемент противодействует. Торсионные пружины, к примеру, используются в сложных механизмах закрывания дверей.

Torsionnye pruzhiny

Спиральные имеют форму ленты закрученной в спираль. Этот элемент применяется для накопления энергии. При установке в механизм он закручивается, накапливая за счет своей упругости энергию на раскручивание. Именно такие пружины применяются в часовых механизмах, работающих на заводе без использования электрического источника энергии. Также их используют в ручных стартерах бензопил, мотокос для возврата шнура обратно и т.п.

Spiralnye pruzhiny

Тарельчатая пружина имеет вид шайбы выгнутой под конус. За счет упругости металла она противодействует сжатию. Они постоянно подпирают гайки или другие комплектующие. Это достаточно редко применяемый элемент, однако он получил широкое распространение в механизмах рулевых реек большинства автомобилей.

Tarelchataia pruzhina

Волновые представляют собой ленту уложенную по синусоиде, то есть волной. Она навивается по кругу, как и винтовые изделия. Однако благодаря волнообразной укладки при сжатии, она воздействует обратно одинаково по всей плоскости без стремления уйти в сторону. Такое ее качество важно при изготовлении точных механизмов. Волновой элемент также может изготавливаться в виде незамкнутого кольца или тарельчатой пружины с синусоидой.

Volnovye pruzhiny

Классификация пружин по способу нагрузки

Более важным параметром, чем само устройство пружины, является способ ее нагрузки. При изготовлении различных механизмов возможно предусмотреть установку в него пружины практически любого устройства, главное чтобы она подходила по способу нагрузки.

Выполняется классификация пружин на следующие разновидности по воздействию:
  • Изгиб.
  • Кручение.
  • Растяжение.
  • Сдавливание.

Пружины изгиба противодействуют на усилие, нацеленное на их изгиб. Это качество используется для поджатия деталей механизмов между собой. Примером являются тарельчатые пружины.

Кручения оснащаются удлиненными ровными краями зацепами, которые фиксируются в механизмах. При попытке изменения их нормального положения в любую сторону они за счет упругости навивки основного тела возвращаются обратно. Примером таких элементов выступают торсионные пружины в бельевых прищепках.

Pruzhina 2

Сжатия и растяжения имеют похожее устройство и отличаются только величиной зазора между витками навивки. Элемент сжатия при сдавливающем воздействии оказывает противодействие. Именно такой тип пружин используется в прижимных клавишах. Пружина растяжения наоборот стремится принять свою нормальную форму на действие направленное на ее удлинение. Она используется в конструкции кроватей раскладушек, спусковых механизмах огнестрельного оружия.

Из чего сделана пружина

Для производства пружин применяется специализированная проволока, имеющая повышенные параметры упругости. Из нее делают все виды пружин, кроме тарельчатых. Последние изготавливаются путем штамповки по листовой стали.

Пружинная проволока производится методом проката из определенного стального сплава. Благодаря специализированному составу, после термообработки, готовое изделие не ломается при механическом воздействии в приделах расчетных нагрузок. Также оно приобретает повышенную устойчивость к снижению упругости после многократной деформации. Однако все пружины без исключения поддаются износу. Он проявляется в виде потери упругости. Со временем они перестают принимать, после деформации, свое изначальное положение, поэтому нуждаются в замене.

Жесткость пружин
Рабочая жесткость пружины зависит от ряда параметров:
  • Химического состава металла.
  • Способа термической обработки.
  • Диаметра применяемой проволоки.
  • Числа витков.
  • Частоты витков.

Одним из самых важных параметров при выборе пружины является коэффициент ее жесткости. Он определяет, какое усилие требуется для сжатия или растяжения готового изделия. Этот параметр является следствием сложных инженерных расчетов, учитывающих множество показателей механизма, в который необходима установка пружины. Для рядового пользователя более привычной выступает оценка по уровню стойкости измеряемой в единицах веса. Большинство пружин просто оценивают по тому, какой массы груз может ее полностью деформировать.

Читайте так же:
Заточка сверла под металл

Если пружина будет подходить к механизму по длине и диаметру, но при этом для ее деформации нужно значительно большее усилие, чем требуется, то система не сможет работать. По сути, развиваемое прижимное усилие не способно вызвать отклик упругости. Если же наоборот жесткости пружины окажется недостаточно, то растянувшись под нагрузкой, она не вернется обратно. Аналогичная ситуация будет и при сжатии.

Жесткость всех видов пружин зависима от температуры. При их подборе оптимально проводить оценку жесткости в той температуре, в которой она будет использоваться. Чем теплее, до определенного порога устойчивости металла, тем выше упругость. При охлаждении структура металла меняется, и пружины приобретают меньший ход и повышенную хрупкость. При эксплуатации в обычных условиях это почти незаметно. Однако такое качество явно проявляется в случае использования тонких пружин в условиях Севера.

Как сделать пружину в домашних условиях

Практически в каждом механизме, где применяется пружина, она имеет свои параметры диаметра и высоты. Вследствие этого после ее износа возникают трудности с заменой. Для достаточно современных механизмов пружины можно заказать у поставщика запчастей, но для старых уже снятых с производства это невозможно.

В таком случае пружину можно изготовить самостоятельно. Для ее производства в домашних условиях требуется наличие пружинной проволоки. Так как она чаще продается на вес от 1 кг, то этого излишне много для получения одной пружины. В таком случае можно приобрести в хозяйственном или автомагазине любую пружину сделанную из проволоки нужного диаметра. Используя ее как источник материала можно изготовить изделие требуемых параметров повторив фабричную технологию в упрощенном варианте. При термообработке пружин на производстве их нагрев и охлаждение делается с точным контролем температуры измерительным оборудованием. В домашних условиях можно приблизительно контролировать нагрев металла по цвету побежалости. При разной температуре тот меняет свой цвет. Сначала он сереет, потом синеет, краснеет, желтеет и становится почти белым.

Пружина донор разогревается любым доступным способом. Можно использовать горн, газовую или бензиновую горелку. Она греется до темно-красного цвета побежалости, после чего оставляется остывать на воздухе. Такая термообработка называется отжиг. Структура металла пружины меняется, и он становится податливым. Благодаря этому она легко разматывается на проволоку.

Далее проволока наматывается на шаблон нужного диаметра. В его качестве может использоваться прут, болт и т.д. Витки делаются вплотную. Затем заготовка снимается с бланка и из нее формируется необходимая пружина. Если она должна работать на сжатие, то витки разводятся. При изготовлении пружины растяжения в ней формируются проушины. Если же изготавливается торсионное изделие, то края оставляются длинными и ровными.

Pruzhina 3

После этого заготовка снова разогревается до темно-красного цвета и остужается в машинном масле. Это закаляет металл, делая его снова твердым, упругим, но хрупким. Затем изделие снова греется горелкой, но уже до светло-серого цвета и оставляется остужаться на воздухе. В результате металл отпускается. Он сохраняет упругость, но теряет хрупкость. В таком виде изделие уже может использоваться по назначению.

Формы витых пружин
Витые пружины бывают:
  • Цилиндрические.
  • Конические.

Навитые на бланк пружины могут иметь не только правильную цилиндрическую форму, но и коническую. В ней каждый новый виток уже предыдущего. Такое изделие применяется в том случае, если на него дополнительно ложиться поддерживающая функция. Оно не только срабатывает на возврат при деформации, но и работает как опора. Конические пружины можно встретить на дорожных классических велосипедах, где они поддерживают сидение.

Pruzhina 4

Цилиндрические и конические пружины могут быть обычными или составными. Составные являются сдвоенными. Это соединенные вместе 2 пружины разного диаметра. Одна располагается снаружи, а вторая ставится между ее витками. Таким образом, они работают вместе, обеспечивая необходимый уровень жесткости.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector