Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель 28BYJ-48-5V с драйвером на ULN2003; Урок № 8

"Шаговый двигатель 28BYJ-48-5V с драйвером на ULN2003" — Урок № 8

Скоро на моём канале в YOUTUBE появится новый урок «Шаговый двигатель 28BYJ-48-5V с драйвером на ULN2003».

Характеристики

  • Номинальное напряжение: 5 В
  • Угол шага 5,625 ° / 64
  • Передаточное отношение редуктора:1/64
  • Частота 100 Гц /> Сопротивление постоянному току 50Ω ± 7% (25 ℃)
  • Крутящий момент> 34.3mN.m (120 Гц)
  • Момент трения 600-1200 gf.cm
  • Класс изоляции 600VAC/1mA/1s
  • Шум <35dB (120 Гц, без нагрузки, 10 см)
  • Размеры платы драйвера: 38mm X 30mm
  • Максимальный допустимый ток драйвера на 1 канал: 500mA

Шаговые двигатели применяют в механических системах точного позиционирования

Четырех фазный шаговый двигатель 28BYJ-48 — это бесколлекторный двигатель, вращение вала осуществляется шагами (дискретное перемещение).
На роторе (валу), расположен магнит, а вокруг него расположены катушки, если поочередно подавать ток на эти катушки, создается магнитное поле, которое отталкивает или притягивает магнитный вал, тем самым заставляя двигатель вращаться.
Такая конструкция позволяет с большой точностью управлять валом, относительно катушек.

  • ЧПУ станках,
  • 3-D принтерах,
  • принтерах,
  • роботах-манипуляторах.

Шаговые двигатели преобразуют электрические импульсы в перемещение вала на определенный угол.

Минимально возможный угол перемещения шагового двигателя, называется шагом.
Редуктор, с передаточным числом 1:64.(если быть точнее 1:63,68395) Это означает, что двигатель за один оборот осуществляет 4076 шагов.

Большим преимуществом шаговых двигателей над двигателями постоянного вращения является обеспечение точного углового позиционирования ротора.
Также в шаговых двигателях имеется возможность быстрого старта, остановки, реверса.

Двигатель содержит две обмотки, каждая имеет отвод от середины. Получается четыре фазы, поэтому его называют — шаговый четырёх фазный двигатель.
Отводы обмоток соединены вместе, к ним подключен красный провод и служат для питания двигателя, так-как каждая обмотка подключена к питанию, такие двигатели называют униполярными.
Подключение обмоток шагового двигателя

При подаче питания создается магнитное поле, которое воздействует на магниты и заставляет вал вращаться.

Полношаговый режим.

  • 4 ступени импульсов на один шаг;
  • 32 шага за один оборот ротора.
  • Встроенный редуктор с передаточным числом 64(точнее 63,68395)
  • Получается около 2048 шагов
  • Угол шага 11,25 градуса.

Подключая одновременно сразу две соседние катушки, магнитное поле, действующее на ротор, будет сильнее, тем самым повысится и крутящий момент двигателя.
Такой режим работы униполярного двигателя называется полношаговым.
Полношаговый режим

полношаговый режим работы шагового двигателя

Полушаговый режим.

  • 8 ступеней импульсов на 1 шаг.
  • 64 шага за один оборот ротора.
  • Встроенный редуктор с передаточным числом 64(точнее 63,68395)
  • Получается около 4096 шагов(точнее 4075.7728395)
  • Угол шага 5,62 градуса.

В таком режиме за один оборот ротора, двигатель делает в два раза больше шагов, тем самым увеличивая точность позиционирования.
Однако, в таком режиме двигатель каждый второй шаг имеет сниженный крутящий момент, о чём не стоит забывать!
полношаговый режим

полушаговый режим работы шагового двигателя

Драйвер ULN2003 A

Цифровой вывод микроконтроллера выдает ток до

40 мА, а одна обмотка 28BYJ-48 в пике потребляет

320 мА, то есть, если подключить двигатель напрямую, микроконтроллер сгорит.
Для защиты был разработан модуль шагового двигателя ULN2003, в котором используется микросхема ULN2003A (состоящая из 7 ключей), которая позволяет управлять нагрузкой до 500 мА (один ключ).
Данный модуль может работать с 5 Вольтовым и 12 Вольтовым двигателем 28BYJ-48.

Модуль управления шаговым двигателем ULN2003

Схема ULN2003A

схема подключения ULN2003A

Подключение шагового двигателя к Ардуино

подключение шагового двигателя к Ардуино

Для управления шаговыми двигателями часто используют 4 библиотеки.

  • Stepper — стандартная библиотека, уже входит в Arduino IDE. Осуществляет только полношаговый режим коммутации.
  • CustomStepper
  • Stepper_28BYJ
  • AccelStepper

Файлы для скачивания внизу на этой странице.

Мы остановимся на AccelStepper, так как она более удобна для работы и обладает большими возможностями.

Эта библиотека очень хорошо работает совместно с шаговым мотором 28BYJ-48 (мотор почти не греется), а также поддерживает ускорение, что позволяет заставить мотор вращаться быстрее. Библиотека использует код, не блокирующий шаги и включает немало других приятных особенностей.

  • Объектно-ориентированный интерфейс для 2, 3 или 4-выводных шаговых двигателей
  • Поддержка ускорения и замедления
  • Поддержка одновременно нескольких шаговых двигателей с независимой работой для каждого мотора
  • Функции API не используют функцию delay и не прерывают работу
  • Поддержка выбора функции для реализации шага позволяет работать совместно с библиотекой AFMotor
  • Поддержка контроллеров шаговых двигателей таких как Sparkfun EasyDriver (основанных на микросхеме драйвера 3967)
  • Поддержка низких скоростей
  • Расширяемый API
  • Поддержка подклассов

Функции библиотеки.

Для регулировки оборотов необходимо использовать линейный потенциометр на 10 кОм, подключается движком к А0, другие два вывода к +5 и GND.

Шаговый двигатель, управляемый платой
AccelStepper mystepper(DRIVER, step, direction);

Шаговый двигатель, управляемый Н-мостом
AccelStepper mystepper(FULL2WIRE, pinA, pinB);

Униполярный двигатель, управляемый транзисторами.
AccelStepper mystepper(FULL4WIRE, pinA1, pinA2, pinB1, pinB2);

Ардуино и шаговый двигатель: основы, схемы, подключение и управление

Шаговые двигатели используют для управления положением чего-либо, или для вращения рабочего узла с заданной скорости и на заданный угол. Такие особенности сделали возможным его применение в робототехнике, станках с числовым программным управлением (ЧПУ), и других системах автоматизации. В этой статье мы рассмотрим ряд вопросов связанных с устройством шаговых двигателей и способами их управления с помощью микроконтроллера Arduino.

Ардуино и шаговый двигатель

Шаговый двигатель отличия от обычного

Все используемые на практике электродвигатели работают за счет электродинамических явлений и процессов происходящих в магнитных полях роторов и статоров. Как мы уже упомянули, любой двигатель состоит как минимум из двух частей – подвижной (ротор) и неподвижной (статор). Для его вращения нужно чтобы и магнитное поле тоже вращалось. Поле ротора вращается вслед за полем статора.

В принципе, таких базовых сведений достаточно для понимания общей картины работы электрических двигателей. Однако на самом деле промышленность производит различные варианты электродвигателя, среди которых:

1. Асинхронный двигатель с короткозамкнутым или с фазным ротором.

2. Синхронный двигатель с обмотками возбуждения или с постоянными магнитами.

3. Двигатель постоянного тока.

4. Универсальный коллекторный двигатель (работает и на постоянном токе и на переменном, ведь обмотки ротора сами подключаются и отключаются от контактов источника питания за счет конструкции ламелей и якоря).

5. Бесщеточные двигатели постоянного тока (BLDC).

7. Шаговые двигатели.

Последние два вида несут особую ценность, благодаря возможности их, в определенной степени, точного позиционирования в пространстве. Давайте подробнее рассмотрим конструкцию шагового двигателя.

Шаговый двигатель

Определение

Шаговым двигателем называется бесщеточный электродвигатель синхронного типа. На статоре расположено определенное число обмоток, подключение которых вызывает поворот ротора на определенный угол, зависящий от числа шагов. Другими словами ток в обмотке статора вызывает поворот вала на дискретный угол.

При равномерной и последовательной смене полярностей напряжения на обмотках и переключении запитанных обмоток происходит вращение шагового двигателя, подобно обычному электродвигателю, хотя на самом деле просто происходит регулярный поворот на фиксированный угол.

Устройство шагового двигателя

Шаговый двигатель иногда называют двигателем с конечным количеством положений ротора. Звучит не совсем понятно, давайте разберемся. Представим обычный двигатель – положение его ротора никак не фиксируется, то есть он просто вращается пока подключено питание, а когда оно отключается, то останавливается через какое-то время, зависящее от его инерции. Положений ротора может быть сколько угодно много, а отличаться они могут на мельчайшие доли градуса.

В шаговом двигателе подключение обмотки или нескольких обмоток вызывает «примагничивание» ротора по отношению к этим обмоткам. Внешне это выглядит именно как поворот вала на определенный угол (шаг). Так как количество шагов является одной из важных характеристик этого типа электропривода, то и количество положений ротора равно количеству шагов. Новичкам сложно понять, как это может быть, и как он в таком случае вращается – на самом деле все достаточно просто, мы это покажем на иллюстрациях и описаниях ниже.

Arduino и шаговый двигатель

Конструкция

На статоре электродвигателя закреплены обмотки возбуждения. Его ротор выполняется из магнитомягких или магнитотвердых материалов. От материала ротора зависит крутящий момент и фиксация вала при обесточенных обмотках. Эти параметры могут быть критичными.

Обмотки шагового двигателя

Поэтому выделяют магнитотвердые роторы (они же на постоянных магнитах) и магнитомягкие (реактивные) роторы, кроме них есть и гибридные роторы.

Гибридный ротор делают зубчатым, количество зубцов соответствует количеству шагов. Зубцы расположены вдоль оси ротора. При этом такой ротор разделен на две части поперек. Между ними установлен постоянный магнит, таким образом, каждая из половин ротора является полюсом магнита. Также следует сказать, о том, что половины ротора повернуты на половину шага зубцов друг относительно друга.

Ротор двигателя

Как уже было сказано, такой двигатель является синхронным, так и процесс его вращения заключается в создании вращающего поля ротора, за которым стремится магнитный ротор, а это реализовывается за счет переключения контроллером обмоток поочередно.

Виды шаговых двигателей ШД по конструкции обмоток делят на три основных группы по схеме подключения обмоток:

3. С четырьмя обмотками.

Виды шаговых двигателей

Биполярные электродвигателя в большинстве своем имеют 4 контакта – это выводы с двух обмоток. Внутри двигателя они по большому счету никак не соединены между собой. Основной проблемой является то, что нужно обеспечить переключение полярности питания, это значит, что драйвер и сам процесс управления усложнится.

Униполярные напоминают соединение обмоток по схеме звезды. Другими словами, у вас есть 5 выводов – 4 из них это концы обмоток, а 1 – точка соединения всех обмоток.

Для управления таким двигателем нужно просто подавать поочередно питание на каждый из концов обмотки (или их пару, в зависимости от выбранного режима вращения), таким образом будет запитываться каждый раз половинка обмотки. Может работать в биполярном режиме, если запитывать полностью всю обмотку минуя отвод от её середины.

Двигатели с 4 обмотками имеют преимущество в том, что вы можете подключить обмотки любым удобным для вас образом и получить как биполярный, так и униполярный двигатель.

Режимы управления

Различают 4 основных режима управления шаговым двигателем:

1. Волновое управление.

Волновым управлением называют управление одной обмоткой. Т.е. одновременно ток течет через одну из обмоток, отсюда две отличительных черты – низкое энергопотребление (это хорошо) и низкий крутящий момент (это плохо).

В данном случае этот двигатель делает 4 шага за один оборот. Реальные же двигатели делают десятки шагов за один оборот, это достигается бОльшим количеством чередований магнитных полюсов.

Полношаговое управление является наиболее часто используемым. Здесь напряжение подается не на одну обмотку, а на две сразу. Если обмотки соединены параллельно – то ток удваивается, а если последовательно, то удваивается напряжение питания соответственно. С одной стороны в таком методе управления двигатель потребляет больше энергии, с другой – крутящий момент 100%, в отличие от предыдущего.

Полушаговое управление интересно тем, что становится возможным более точное позиционирование вала двигателя, благодаря к тому, что к целым шагам добавляются еще и половинки это достигается совмещение предыдущих двух режимов работы, а обмотки чередуются, то включаясь попарно, то по одной.

Стоит учесть, что момент на валу плавает от 50 до 100% в зависимости от того 1 или 2 две обмотки задействованы в данный момент.

Еще более точным является микрошаговый. Он похож на предыдущий, но отличается тем, что питание на обмотки подаётся не полной величины, а постепенно изменяющейся. Таким образом, изменяется степень воздействия на ротор каждой из обмоток и плавно изменяется угол поворота вала в промежуточных шагам положениях.

Где взять шаговый двигатель

Где взять шаговый двигатель

Купить шаговый двигатель вы успеете всегда, но настоящие радиолюбители, самодельщики и электронщики славятся тем, что могут из мусора сделать что-то полезное. Наверняка, у вас дома найдется хотя бы один шаговый двигатель. Давайте разберемся, где нужно искать, чтобы найти такой двигатель.

1. Принтера. Шаговые двигатели могут стоять на вращении вала подачи бумаги (но может быть и двигатель постоянного тока с датчиком перемещения).

2. Сканеры и МФУ. В сканерах часто устанавливают шаговый двигатель и механическую часть, направляющую вдоль которой ходит каретка, эти детали также могут стать полезны при разработке самодельного ЧПУ станка.

3. CD и DVD приводы. В них также можно достать и штанги и винтовые валы для самоделок и различных ЧПУ.

Винтовой вал

4. Floppy-дисководы. В дискетниках также есть шаговые двигатели, особо ценятся флопики формата 5.25”.

Floppy-дисковод

Драйвер для шагового двигателя

Для управления шаговыми двигателями используют специализированные микросхемы-драйвера. В большинстве своем это H-мост из транзисторов. Благодаря такому включению появляется возможность включать на обмотку напряжение нужной полярности. Эти микросхемы подходят и для управления двигателями постоянного тока с поддержкой изменения направления вращения.

В принципе очень маленькие двигателя можно запустить и прямо от пинов микроконтроллера, но обычно они выдают до 20-40 мА, чего в большинстве случае недостаточно. Поэтому приведем несколько примеров драйверов для шаговых двигателей:

1. Платы на базе L293D. Их множество, одна из таких продается под отечественной маркой «Амперка» под название Troyka Stepper, пример его использования в реальном проекте приведен на видео ниже. Преимущество конкретно этой платы в том, что на ней расположены микросхемы логики которые позволяют сократить количество используемых для управления пинов.

Сама по себе микросхема работает под напряжение 4.5-36В и выдает ток до 600мА-1А в зависимости от корпуса ИМС.

2. Драйвер на базе A4988. Питается напряжением до 35В, выдерживает ток до 1А без радиатора, а с радиатором до 2А. Может управлять двигателем, как целыми шагами, так и частями – от 1/16 шага до 1 шага, всего 5 вариантов. Содержит два H-моста. С помощью подстроечного резистора (видно на правом фото) можно задавать выходной ток.

Драйвер для шагового двигателя

Размер шага задается сигналами на входах MS1, MS2, MS3.

Размер шага задается сигналами на входах MS1, MS2, MS3

Вот схема его подключения, каждый импульс на входе STEP задает поворот двигателя на 1 шаг или на микрошаг.

Схема подключения

3. Драйвер на базе ULN2003 работает с двигателями на 5 и на 12В и выдаёт ток до 500 мА. На большинстве плат расположены 4 светодиода индицирующих работу каждого из каналов.

Драйвер на базе ULN2003

Также на плате вы можете видеть клеммную колодку для подключения двигателей, кстати, многие из них продаются именно с таким разъёмом. Примером такого двигателя является 5В модель – 28BYJ-48.

Модель – 28BYJ-48

И это не все варианты драйверов для шаговых двигателей, на самом деле их еще больше.

Подключение к Arduino драйвера и шагового двигателя

В большинстве случаев нужно использовать микроконтроллер в паре с драйвером для шагового двигателя. Давайте рассмотрим схему подключения и примеры программного кода. Рассмотрим подключение на базе последнего приведенного драйвера – ULN2003 к плате Arduino. И так у него есть 4 входа, они подписаны, как IN1, IN2 и т.д. Их нужно соединить с цифровыми пинам платы ардуино, а к драйверу подсоединить моторчик как показано на рисунке ниже.

Подключение к Arduino драйвера и шагового двигателя

Далее в зависимости от способа управления вы должны подавать на входы 1 или 0 с этих пинов включая 1 или 2 обмотки в нужно последовательности. Код программы полношагового управления выглядит примерно так:

Драйвер шагового двигателя DRV8825. Подключение к Arduino.

В предыдущей статье уже рассмотрели самый распространённый драйвер шагового двигателя A4988. В данной статье рассмотрим еще одни, не менее популярный, драйвер шагового двигателя DRV8825 и подключим его к Arduino, а также научимся управлять шаговым двигателем. Не смотря на то, что драйвер шагового двигателя DRV8825 полностью взаимозаменяем с драйвером A4988, драйвер DRV8825 имеет ряд преимуществ: рабочее напряжение до 45В, ток до 2,5 А и деление микрошага до 1/32.

драйвер шагового двигателя DRV8825 и подключим его к Arduino

Технические характеристики драйвер DRV8825.

    • Напряжение питания: от 8.2 до 45 В.
    • Установка шага: 1; 1/2; 1/4; 1/8; 1/16; 1/32.
    • Напряжение логики: 3,3 В.
    • Защита от перегрева: Есть.
    • Максимальный ток на фазу: 1,5 А без радиатора, 2,5 А с радиатором.
    • Габариты модуля: 20 мм х 15 мм х 10 мм.
    • Габариты радиатора: 9 мм х 5 мм х 9 мм.

    Технические характеристики драйвер DRV8825.

    Общая информация о драйвере DRV8825.

    Основная микросхема модуля — это драйвер от TI (Texas Instruments Inc.) DRV8825, который способен управлять одним биполярным шаговым двигателем. Данный драйвер полностью взаимозаменяемый с драйвером A4988. Микросхема DRV8825 может работать с выходным напряжением до 45 В. и током до 1,5 на катушку без радиатора и до 2,5 А. с радиатором (дополнительным охлаждением). Так же, модуль имеет внутренний стабилизатор напряжения, который напитывает логическую часть модуля напряжением 3,3 В от источника шагового питания двигателя.

    Драйвер позволяет использовать шесть вариантов шага: 1; 1/2; 1/4; 1/8; 1/16; 1/32.

    Распиновка драйвера DRV8825.

    Распиновка драйвера DRV8825.

    На драйвере DRV8825 расположено 16 контактов:

    • EN — включение и выключение модуля (0 — включен, 5 В. — выключен).
    • M0, M1 и M2— выбор режима микрошаг (смотрите таблицу ниже).
    • RST — сброс драйвера.
    • SLP — вывод включения спящего режима, если подтянуть его к низкому состоянию драйвер перейдет в спящий режим.
    • STEP — управляющий вывод, при каждом положительном импульсе, двигатель делает шаг (в зависимости от настройки микрошага), чем быстрее импульсы, тем быстрее вращается двигатель.
    • DIR — управляющий вывод, если подать +5 В. двигатель будет вращаться по часовой стрелке, а если подать 0 В. против часовой стрелки.
    • VMOT&GND MOT — питание шагового двигателя от 8,2 до 45 В. (обязательное наличие конденсатора на 100 мкФ.).
    • B2, B1, A1, и A2 — подключение обмоток двигателя.
    • FAULT — Выход включения защиты, если состояние «0», значит, полевые транзисторы H-моста отключены в результате защиты от перегрузки по току, или был перегрев.
    • GND LOGIC — заземление микроконтроллера.
    Подключение питания.

    Подключение питания.

    Модуль может питаться от источника постоянного тока до 45 В. и до 2,5 Ампер при 24 В. А при 45 В. номинального тока до 2,2 А. В общем случае напряжение может быть между 8 и 45 Вольт постоянного тока.

    Пожалуйста, смотрите, что ваш блок питания рассчитан, по крайней мере, на 30% больше, чем максимальный ток, который может быть подан в ваш шаговый двигатель. Обратитесь к техническому паспорту производителя для того, чтобы узнать это значение.

    Выводы для подключения шагового двигателя.

    Выводы для подключения шагового двигателя.

    Выходные контакты: 1B, 1A, 2A ,2B.

    Выводы управления.

    Выводы управления.

    STEP — управляет микрошагом мотора. Каждый высокий импульс, отправляемый на этот вывод, приводит двигатель в действие на количество микрошагов, заданное выводами Microstep Selection (MS1, MS2 и MS3). Чем быстрее импульсы, тем быстрее будет вращаться двигатель.

    DIR — управляет направлением вращения двигателя. Если на него подать высокий уровень, то двигатель будет вращаться по часовой стрелке, а если низкий — против часовой стрелки.

    Если вы просто хотите, чтобы двигатель вращался только в одном направлении, то вы можете соединить вывод DIR непосредственно с VCC или GND соответственно.

    Настройка микрошага драйвера DRV8825.

    Настройка микрошага драйвера DRV8825.

    Драйвер DRV8825 может работать в микрошаговом режиме, то есть может подавать питание на катушки с промежуточным уровнем. Например, если взять двигатель NEMA17 с шагом 1.8 градусов или 200 шагов на оборот, в режиме 1/4, двигатель будет выдавать 800 шагов за оборот.

    Дня настройки микрошага на драйвере DRV предусмотрены три выхода, а именно M0, M1 и M2. Установив соответствующие логические уровни для этих выводов, можно выбрать режим микрошага.

    Драйвер DRV8825 может работать в микрошаговом режиме

    Выводы M0, M1 и M2 в микросхеме DRV8825 подтянуты резистором к земле, поэтому, если не подключать их, двигатель будет работать в режиме полного шага.

    Система охлаждения DRV8825.

    Система охлаждения DRV8825.

    При интенсивной работе микросхемы драйвер DRV8825 начинает сильно греться и если температура превысит предельное значение, то он может сгореть. По документации DRV8825 может работать с током до 2,5 А. на катушку, но на практике микросхема не греется, если ток не превышает 1,2 А. на катушку. Поэтому если ток выше 1,2 А. необходимо устанавливать радиатор охлаждения, который идет в комплекте.

    Настройка тока DRV8825.

    Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя, и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.

    Настройка тока DRV8825.

    Для настройки необходимо рассчитать значение напряжения Vref.

    Vref = Current Limit / 2

    Current Limit — номинальный ток двигателя.

    Для примера рассмотрим двигатель NEMA 17 17HS4401 с током 1,7 А.

    Vref = 1,7 / 2 = 0,85 В.

    Осталось только настроить, берем отвертку и вольтметр, плюсовый щуп вольтметра устанавливаем на потенциометр, а щуп заземления на вывод GND и выставляем нужное значение.

    Подключение драйвера шагового двигателя DRV8825 к Arduino UNO.

    Подключим двигатель DRV8825 к Arduino UNO по схеме.

    Подключим двигатель DRV8825 к Arduino UNO по схеме.

    Для этого подключаем GND LOGIC к GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигателя к контактам B2, B1, A2 и A1.

    Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

    Затем необходимо подключить контакт RST к соседнему контакту SLP к 5В на Arduino, чтобы включить драйвер. А контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND MOT, главное не забудьте подключить электролитический конденсатор на 100 мкФ к контактам питания двигателя. В противном случае, при скачке напряжения модуль может выйти из строя.

    Скетч вращения шагового двигателя NEMA 17, драйвер DRV8825.

    Как уже было упомянуто выше, драйвер DRV8825 заменим драйвером A4988, поэтому и код вращения двигателем можно взять из предыдущей статьи: Драйвер шагового двигателя A4988. Но для увеличения кругозора сегодня будем использовать код вращения двигателя nema 17 без использования библиотеки.

    Описание скетча:

    Для работы данного скетча, не требуется никаких библиотек. Программа начинается с определения выводов Arduino, к которым подключены выводы STEP и DIR. Так же указываем stepsPerRevolution количество шагов на оборот.

    В функции void setup() указываем управляющие контакты как выход.

    В основной функции void loop(), вращаем двигатель по часовой стрелке, затем против, с разной скоростью.

    Подробнее о подключении шаговых двигателей к Ardiono смотрите на сайте Ардуино технологии.

    Для более простого подключения шагового двигателя к Arduino или другому микроконтроллеру существуют модули. Модули бывают разные, на фото ниже приведен пример двух различных модулей.

    Для более простого подключения шагового двигателя к Arduino или другому микроконтроллеру существуют модули

    Распиновку и как подключать модуль драйвера DRV8825 будем рассматривать в следующей статье.

    Использование драйвера DRV8825 с CNC shield v3.

    Драйвер DRV8825 можно установить на CNC shield v3. CNC shield используются для управления ЧПУ станками и облегчают сборку электроники.

    Драйвер DRV8825 можно установить на CNC shield v3. CNC shield используются для управления ЧПУ станками

    Данный набор позволяет без пайки собрать электронику для двух осевых, трех осевых, четырех осевых ЧПУ станков, а также для самостоятельной сборки 3D принтеров. При реализации ЧПУ станков данные шилды используются достаточно часто благодаря своей низкой цене и простоте сборки. Более подробно CNC shield v3 будем рассматривать в следующих статьях.

    Вывод можно сделать следующий. Драйвер DRV8825 обладает рядом преимуществ перед драйвером A4988. А также, при использовании драйвера шагового двигателя DRV8825, меньше шума от шаговых двигателей. Это актуально при сборке лазерного гравера, 3D принтера. Когда при работе главный источник шума — это механика и гул шаговых двигателей.

    Понравился статья Драйвер шагового двигателя DRV8825? Не забудь поделиться с друзьями в соц. сетях.

    А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

    Введение в устройство шаговых двигателей

    Кому может понадобиться более двух проводов и Н-мост? Зачем? Ну, в отличие от обычных щеточных двигателей постоянного тока, построенных для максимального числа оборотов (или кВ для RC), шаговые двигатели представляют собой бесщеточные двигатели, рассчитанные на высокий крутящий момент (впоследствии меньшую скорость) и более точное вращательное движение. В то время как типичный двигатель постоянного тока отлично подходит для вращения гребного винта на высокой скорости для достижения максимальной тяги, шаговый двигатель лучше подходит для прокатки листа бумаги синхронно со струйным механизмом внутри принтера или для осторожного вращения вала линейного рельса в мельнице с ЧПУ.

    Внутри шаговые двигатели являются более сложными, чем простой двигатель постоянного тока, с несколькими катушками вокруг сердечника с постоянными магнитами, но с этой дополнительной сложностью обеспечивается больший контроль. Благодаря тщательному расположению катушек, встроенных в статор, ротор шагового двигателя может вращаться с заданным шагом, изменяя полярность между катушками и переключая их полярность в соответствии с установленной схемой зажигания. Шаговые двигатели не все сделаны одинаковыми, и для их внутреннего исполнения требуются уникальные (но базовые) схемы. Обсудим наиболее распространенные типы шаговых двигателей на следующем шаге.

    Шаг 2: Типы шаговых двигателей


    Есть несколько различных конструкций шаговых двигателей. К ним относятся однополярное, биполярное, универсальное и переменное сопротивление. Мы будем обсуждать конструкцию и работу биполярных и однополярных двигателей, так как это наиболее распространенный тип двигателя.

    У однополярных двигателей обычно есть пять, шесть или восемь проводных выводов, идущих от основания, и одна катушка на фазу. В случае пятипроводного двигателя пятый провод представляет собой соединенные центральные отводы пар катушек. В шестипроводном двигателе каждая пара катушек имеет собственный центральный отвод. В двигателе с восемью проводами каждая пара катушек полностью отделена от других, что позволяет подключать ее в различных конфигурациях. Эти дополнительные провода позволяют приводить в действие однополярные двигатели непосредственно от внешнего контроллера с простыми транзисторами, чтобы управлять каждой катушкой отдельно. Схема зажигания, в которой приводится в действие каждая катушка, определяет направление вращения вала двигателя. К сожалению, учитывая, что за один раз подается только одна катушка, удерживающий момент однополярного двигателя всегда будет меньше, чем у биполярного двигателя того же размера. Обойдя центральные отводы однополярного двигателя, он теперь может работать как биполярный двигатель, но для этого потребуется более сложная схема управления. На четвертом шаге этой статьи мы приведем в действие однополярный двигатель, который должен прояснить некоторые из представленных выше концепций.

    Биполярные двигатели, как правило, имеют четыре провода и являются более прочными, чем однополярный двигатель сравнительного размера, но поскольку у нас есть только одна катушка на фазу, нам нужно повернуть ток через катушки, чтобы перейти на один шаг. Наша потребность изменить ток означает, что мы больше не сможем управлять катушками напрямую с помощью одного транзистора, вместо этого — полная цепь h-моста. Построение правильного h-моста утомительно (не говоря уже о двух!), Поэтому мы будем использовать выделенный драйвер биполярного двигателя (см. Шаг 5).

    Шаг 3: Понимание спецификаций шагового двигателя



    Давайте поговорим о том, как определить технические характеристики двигателя. Если вы встречали двигатель квадратного сечения с определенной сборкой из трех частей (см. Рисунок три), скорее всего, это двигатель NEMA. Национальная ассоциация производителей электрооборудования имеет определенный стандарт для спецификаций двигателя, использующий простой буквенный код для определения диаметра лицевой панели двигателя, типа крепления, длины, фазного тока, рабочей температуры, фазного напряжения, шагов на оборот и проводки.

    Чтение паспорта двигателя

    Для следующего шага будет использован этот однополярный мотор. Выше приложена таблица данных. И хотя она краткая, она предоставляет нам все, что нам нужно для правильной работы. Давайте разберем, что в списке:

    Фаза: это четырехфазный однополярный мотор. Внутренне двигатель может иметь любое количество реальных катушек, но в этом случае они сгруппированы в четыре фазы, которые могут управляться независимо.

    Шаг угла: При приблизительном разрешении 1,8 градусов на шаг мы получим 200 шагов на оборот. Хотя это является механическим разрешением, с помощью микроперехода мы можем увеличить это разрешение без каких-либо изменений двигателя (подробнее об этом в шаге 5).

    Напряжение: номинальное напряжение этого двигателя составляет 3 вольта. Это функция тока и номинальных сопротивлений двигателя (закон Ома V = IR, следовательно, 3V = 2A * 1,5Ω)

    Ток: сколько тока нужно этому двигателю? Два ампера на фазу! Эта цифра будет важна при выборе наших силовых транзисторов для базовой схемы управления.

    Сопротивление: 1,5 Ом на фазу ограничит то, какой ток мы можем подать на каждую фазу.

    Индуктивность: 2,5 мГн. Индуктивная природа катушек двигателя ограничивает скорость зарядки катушек.

    Удерживающий момент: это то, сколько фактической силы мы можем создать, когда на шаговый двигатель подано напряжение.

    Момент удержания: это то, какой момент удержания мы можем ожидать от двигателя, когда он не находится под напряжением.

    Класс изоляции: класс B является частью стандарта NEMA и дает нам рейтинг в 130 градусов Цельсия. Шаговые двигатели не очень эффективны, и постоянное потребление максимального тока означает, что они будут сильно нагреваться при нормальной работе.

    Показатели обмотки: диаметр провода 0,644 мм., количество витков в диаметре 15,5, сечение 0,326 мм2

    Определение пар катушек

    Хотя сопротивление обмоток катушки может варьироваться от двигателя к двигателю, если у вас есть мультиметр, вы можете измерить сопротивление на любых двух проводах, если сопротивление <10 Ом, вы, вероятно, нашли пару! Это в основном процесс пробной ошибки, но он должен работать для большинства двигателей, если у вас нет номера детали / спецификации.

    Шаг 4: Непосредственное управление шаговыми двигателями

    Благодаря расположению проводов в однополярном двигателе мы можем последовательно включать катушки, используя только простые силовые полевые МОП-транзисторы. На рисунке выше показана простая схема с МОП-транзистором. Такое расположение позволяет просто контролировать уровень логики с помощью внешнего микроконтроллера. В этом случае легче всего использовать плату Intel Edison с коммутационной платой в стиле Arduino, чтобы получить легкий доступ к GPIO (однако подойдет любой микро с четырьмя GPIO). Для этой схемы используется транзистор IRF510 N-канальный мощный MOSFET. IRF510, способный потреблять до 5,6 ампер, будет иметь достаточно свободной мощности, чтобы удовлетворить потребности двигателя в 2 амперах. Светодиоды не нужны, но они дадут вам хорошее визуальное подтверждение последовательности работы. Важно отметить, что IRF510 должен иметь логический уровень не менее 5 В, чтобы он мог потреблять достаточный ток для двигателя. Мощность двигателя в этой цепи будет 3 В.

    Полное управление однополярным двигателем с помощью этой настройки очень простое. Для того, чтобы вращать двигатель, нам нужно включить фазы в заданном режиме, чтобы он вращался правильно. Чтобы вращать двигатель по часовой стрелке, мы будем управлять фазами следующим образом: A1, B1, A2, B2. Чтобы вращать против часовой стрелки, мы просто изменим направление последовательности на B2, A2, B1, A1. Это хорошо для базового контроля, но что, если вы хотите большей точности и меньше работы? Давайте поговорим об использовании выделенного драйвера, чтобы сделать всё намного проще!

    Шаг 5: Платы драйверов шаговых двигателей


    Если вы хотите приступить к управлению биполярными двигателями (или однополярными двигателями в биполярной конфигурации), вам нужно взять специальную плату управления драйвером. На фото выше изображен драйвер Big Easy Driver и плата-носитель драйвера шагового двигателя A4988. Обе эти платы являются печатными платами для микрошагового двухполюсного драйвера шагового двигателя Allegro A4988, который на сегодняшний день является одним из наиболее распространенных чипов для привода небольших шаговых двигателей. Помимо наличия необходимых двойных h-мостов для управления биполярным двигателем, эти платы дают много возможностей для крошечной недорогой упаковки.

    Эти универсальные платы имеют удивительно низкое соединение. Вы можете начать управлять двигателем, используя только три соединения (только два GPIO) с вашим главным контроллером: общее заземление, шаг и направление. Ступенчатый шаг и его направление остаются плавающими, так что нужно привязать их к опорному напряжению с нагрузочным резистором. Импульс, посылаемый на вывод STEP, будет перемещать двигатель на один шаг с разрешением в соответствии с эталонными выводами микрошага. Логический уровень на выводе DIR определяет, будет ли двигатель вращаться по часовой стрелке или против часовой стрелки.

    В зависимости от того, как установлены выводы M1, M2 и M3, вы можете добиться увеличения разрешения двигателя с помощью микрошагования. Микрошаг включает в себя посылку разнообразных импульсов, чтобы тянуть двигатель между электромагнитным разрешением физических магнитов в роторе, обеспечивая очень точное управление. A4988 может перейти от полного шага до разрешения шестнадцатого шага. С нашим двигателем 1,8 градуса это обеспечит до 3200 шагов за оборот. Поговорим о мелких деталях!

    Подключение двигателей может быть легким, но как насчет управления ими? Посмотрите эти готовые библиотеки кода для управления шаговыми двигателями:

    Stepper — классика, встроенная в Arduino IDE, позволяет выполнять базовый шаг и управление скоростью вращения.

    AccelStepper — гораздо более полнофункциональная библиотека, которая позволяет лучше управлять несколькими двигателями и обеспечивает правильное ускорение и замедление двигателя.

    Intel C ++ MRAA Stepper — библиотека более низкого уровня для тех, кто хочет углубиться в управление необработанным шаговым двигателем C ++ с помощью Intel Edison.

    Этих знаний должно быть достаточно, чтобы вы поняли как работать с шаговыми двигателями в электромеханическом мире, но это только начало.

    голоса
    Рейтинг статьи
    Читайте так же:
    Как отшлифовать дерево в домашних условиях
Ссылка на основную публикацию
Adblock
detector