Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить мощность трансформатора по формуле

Как определить мощность трансформатора по формуле

Расчет трансформатора

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Как определить мощность трансформатора

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Расчет обмоток трансформатора

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Фарадей

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Расчет силового трансформатора

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Как рассчитать трансформатор

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

Читайте так же:
Зернистость шлифовальных кругов для дерева

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Мощность трансформатора по сечению магнитопровода

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

Расчет мощности трансформатора

  • Автотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
  • Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
  • Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
  • Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
  • Силовые устройства работают с напряжением до 750 киловольт.

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Расчет трансформатора

Силовой трансформатор является наиболее простым примером преобразования электрической энергии. Даже при условии постоянного совершенствования радиоэлектронных устройств и источников питания на их основе блоки питания на основе трансформаторов переменного напряжения не теряют актуальности.

Силовой трансформатор

Трансформаторы для блока питания имеют большие габариты и массу, работают в ограниченном диапазоне допустимого входного напряжения, но при этом очень просты в реализации, отличаются высокой надежностью и ремонтопригодностью.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

  • Броневые;
  • Стержневые.

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.

Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Исходные данные

Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:

  • Напряжение сети;
  • Напряжение и количество вторичных обмоток;
  • Токи потребления нагрузок.

Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.

Читайте так же:
Как сделать паяльную станцию своими руками

Порядок расчета

Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:

Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:

Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:

  • До 50 Вт – 0.6 (60%);
  • От 50 до 100 Вт – 0.7 (70%);
  • От 100 до 150 Вт – 0.8 (80%).

Более мощный трансформатор будет иметь КПД 0.85.

Таким образом, расчет габаритной мощности выглядит таким образом:

Рг = КПД∙Рс, где Рс – полная мощность.

На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:

Согласно данной формуле, искомая площадь сечения получается в квадратных сантиметрах. По полученным данным подбирают сердечник с близким или несколько большим значением сечения. Используя разборные сердечники из Ш и П образных пластин, можно в некоторых пределах изменять толщину набора, добавляя или убирая по несколько пластин.

Как определить мощность неизвестного трансформатора? Нужно возвести в квадрат площадь сердечника, выраженную в квадратных сантиметрах.

Обратите внимание! Поперечное сечение магнитопровода должно, по возможности, иметь приближенную к квадрату форму.

После выбора магнитопровода, рассчитываем намоточные данные. Имея в наличии магнитопровод и зная площадь его сечения, можно выполнить расчет обмоток трансформатора (количества витков в обмотках). Принято за основу расчета брать количество витков, которые приходятся на 1 В напряжения, поскольку данное число одинаково для всех обмоток и зависит от характеристик магнитопровода и частоты напряжения питающей сети. Полная формула, которая учитывает частоту сети, магнитную индукцию в сердечнике, имеет большую сложность и в расчетах практически никогда не применяется. Вместо этого используют упрощенный вариант, который учитывает лишь материал и конструкцию сердечника:

N=k/S, где k – коэффициент из следующего перечня:

  • Ш и П образные пластины магнитопровода – k = 60;
  • Ленточный сердечник – k = 50;
  • Тороидальный магнитопровод – k = 40.

Как видно, при использовании тороидального сердечника количество витков будет минимальным.

Тороидальный трансформатор

Зная количество витков на вольт, легко определить намоточные данные обмоток на любое напряжение:

Для первичной обмотки это будет:

Обратите внимание! Поскольку для понижающих трансформаторов сечение провода и количество витков сетевой обмотки больше всех остальных, то и омические потери в проводах также будут выше, поэтому для маломощных трансформаторов (до 100 Вт) нужно учесть эти потери, увеличив количество витков первичной обмотки на 5%.

Если рассчитывается трансформатор стержневого типа, то обычно обмотки делят пополам и наматывают их на обоих стержнях равномерно. Части одинаковых обмоток затем соединяют последовательно.

Не менее важным этапом расчета трансформатора является определение сечения проводников обмотки. Здесь за основу берется такое значение тока в проводах, которое вызывает их минимальный нагрев. Чем выше сечение провода, тем меньше плотность тока через единицу сечения и, соответственно, меньше нагрев. Но чрезмерное увеличение сечения обмоточных проводов приводит к увеличению массы трансформатора, завышению стоимости, а также вероятности того, что обмотки просто не поместятся в окнах магнитопровода.

Принято считать оптимальным плотность тока в обмотках 4-7 А на 1 мм2. Меньшее значение плотности используется для расчета сечения проводов первичной обмотки или любой другой, которая находится ближе к сердечнику магнитопровода. У данных обмоток наихудшие условия охлаждения.

Чтобы не оперировать плотностями тока и сложными формулами перевода площади сечения в диаметр, можно посчитать диаметр, используя их упрощенный вариант:

  • d = 0.7∙√I – для проводников первичной обмотки;
  • d = 0.6∙√I – для проводников вторичных обмоток.

Для обмоток используется изолированный обмоточный провод по сечению, наиболее близкому к расчетному, но не меньше его.

Важно! Формула дает расчётное значение для голого провода, без учета изоляции.

Для измерения диаметра неизвестного провода необходим микрометр. Приблизительно определить диаметр можно, намотав на карандаш десять витков и измерив длину намотки.

Чтобы определить, поместятся ли обмотки в окнах магнитопровода, подсчитайте коэффициент заполнения окна:

K=0.008∙(d12 ∙w1+ d22 ∙w2+ d32 ∙w3+…)/Sокна.

Если получившееся значение больше 0.3, то обмотки не поместятся, а перемотка наполовину готового устройства к хорошему результату не приведет. Выходов несколько:

  • Использовать магнитопровод с большим сечением;
  • Увеличить плотность тока в обмотках (не более 5%);
  • Понизить число витков во всех обмотках одновременно (также не более 5%).

Уменьшение количества витков приведет к появлению повышенного тока холостого хода и потерям в трансформаторе, которые буду выражены в повышении его температуры. Поэтому использование последних двух способов можно рекомендовать исключительно как крайнюю меру.

Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным. Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник. Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.

Читайте так же:
Где находится редуктор в машине

Разборный каркас

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку. Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий. Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.

ФУМ лента

Сборка трансформатора

Качество трансформатора во многом зависит от правильности сборки магнитопровода. При сборке Ш образного броневого сердечника соседние пластины нужно укладывать поочередно в разные стороны. Пакет пластин должен быть уложен максимально плотно. После сборки его нужно обязательно плотно стянуть винтами. Неплотно стянутый трансформатор издает сильный шум во время работы. Особое внимание следует уделить плотному прилеганию Ш образных пластин с пластинами перекрытия. Зазор между ними приведет к тому, что сердечник станет разомкнутым, а отсюда вытекает следующее:

  • Повышение тока холостого хода;
  • Снижение КПД;
  • Повышенное магнитное поле рассеивания.

При сборке разрезного ленточного сердечника нужно обращать внимание на соответствие частей друг другу, поскольку при изготовлении они подгоняются путем шлифовки. Для понижения шума торцы пакетов пластин можно покрыть слоем лака.

Ленточный сердечник

Обратите внимание! Части ленточного магнитопровода требуют аккуратного обращения, поскольку расслоившиеся ленты практически невозможно установить на прежнее место. Пластины разборного сердечника нельзя гнуть и подвергать ударам, поскольку это нарушит структуру металла, и он потеряет свои свойства. В крайнем случае, изогнутые под большим радиусом пластины нужно аккуратно разогнуть руками и при сборке уложить их в середину пакета пластин. При дальнейшей стяжке они выровняются.

Расчет сетевого трансформатора не представляет сложности. Важнее здесь определиться с предъявляемыми к нему требованиями. От правильности поставленной задачи будет зависеть точность дальнейших расчетов. Для силового трансформатора расчет так же удобно выполнить, используя он-лайн калькулятор. По такой же методике рассчитывается повышающий трансформатор.

Видео

Как определить размеры трансформатора?

Всем доброго времени суток! Довольно часто у радиолюбителей возникают вопросы касающиеся определению размеров трансформатора. Зачастую они пользуются известными формулами связывающие сечение сердечника и мощность, которую передает трансформатор. Но зачастую данные выражения, которые можно встретить в сети, выведены под конкретную серию трансформаторов и не учитывают особенностей материала магнитопровода и обмоток. В данной статье я попробую раскрыть некоторые нюансы определения размеров сердечника.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Как определить габаритную мощность трансформатора?

В настоящее время основными критериями для разработки трансформатора является его минимальный размер и масса. Однако снижать габариты трансформатора можно лишь до некоторых пределов, которые ограничены допустимой рабочей температурой. Это связано с тем, что нагрев трансформатора зависит от потерь мощности в сердечнике и в обмотках, которые растут с уменьшением размеров трансформатора. Кроме этого перегрев связан с уменьшением площади теплоотдачи трансформатора.

В связи с этим для связи конструктивных и электромагнитных параметров трансформатора ввели понятие габаритной мощности трансформатора РГ, которая определяется как полусумма мощностей всех его обмоток

где Р1, Р2 и Рi – соответственно мощности первичной, вторичной и i-й обмотки трансформатора.

В случае наличия у трансформатора обмоток со средней точкой необходимо приводить такие трансформаторы к двухобмоточным. Выражения для определения габаритной мощности трансформатора в зависимости от типа обмоток приведены ниже.

Для трансформатора с двумя обмотками без отводов

трансформатора с двумя обмотками без отводов

где Р1 – мощность поступающая на первичную обмотку,

Р2 – мощность снимаемая с вторичной обмотки,

η – КПД трансформатора.

Для трансформатора с одной первичной обмоткой и одной вторичной обмоткой со средней точкой

трансформатора с одной первичной обмоткой и одной вторичной обмоткой со средней точкой

Для трансформатора с одной первичной обмоткой со средней точкой и одной вторичной обмоткой без отводов

трансформатора с одной первичной обмоткой со средней точкой и одной вторичной обмоткой без отводов

Для трансформатора с одной первичной обмоткой со средней точкой и одной вторичной обмоткой со средней точкой

трансформатора с одной первичной обмоткой со средней точкой и одной вторичной обмоткой со средней точкой

Как определить размер требуемого сердечника?

Как сказано выше, минимальные размеры трансформатора ограничены температурой перегрева трансформатора, на которую влияет потери мощности в самом трансформаторе. Определение минимальных размеров трансформатора в инженерной практике и радиолюбительстве является итерационным процессом, то есть задаются некоторые исходные данные (магнитная индукция, плотность тока и т.д.) и по ним вычисляют размер магнитопровода, после чего его проверяют на заданный перегрев.

Если полученное значение перегрева значительно отличается от требуемого, то уменьшают или увеличивают исходные данные и заново пересчитывают размеры сердечника. Такие пересчёты выполняют до тех пор, пока полученное значение перегрева не будет удовлетворять требуемому значению.

Тепловые расчёты трансформатора, в частности температуру перегрева ∆Т, выполняют аналогично как и для дросселя. Выражение для определения температуры перегрева имеет вид

Читайте так же:
Гаражное оборудование своими руками

где ∆Р — суммарные потери мощности в трансформаторе, Вт,

kT – коэффициент теплоотдачи, для упрощения расчётов можно принять равным kT = 1,2*10 -3 Вт/(см 2 °С),

ST – площадь охлаждения трансформатора, см 2 .

Потери мощности определяются, так же как и для дросселя, но с учётом наличия нескольких обмоток трансформатора. Они зависят от размеров сердечника и свойств вещества, из которого он изготовлен.

Для определения размеров магнитопровода трансформатора используем закон электромагнитной индукции

где kф – коэффициент формы ЭДС,

f – частота изменения ЭДС,

ω – число витков обмотки трансформатора,

Bm – максимальное значение магнитной индукции в сердечнике,

Sc – площадь сечения сердечника трансформатора,

kс – коэффициент заполнения магнитопровода «сталью». Для ферритов kс = 1, для сердечников из листового материала при толщине ленты 0,35 – kс = 0,9…0,93, при толщине ленты 0,5 – kс = 0,93…0,95.

Преобразовав выражение, получим количество витков провода в обмотке трансформатора

Так как провод обмотки невозможно абсолютно плотно уложить в окно трансформатора, из-за множества факторов (использование круглого провода, наличие изоляции провода, межслоевой и межобмоточной изоляции), то необходимо ввести коэффициент заполнения окна kо, который в большинстве случаев не превышает kо = 0,3, а чаще всего составляет kо = 0,2…0,25. При этом, чем больше диаметр провода обмотки, тем меньше данный коэффициент.

Таким образом, заполнения окна магнитопровода обмоткой соответствует следующему выражению

где ko – коэффициент заполнения окна сердечника,

So – площадь окна сердечника,

w1, w2 – количество витков первичной и вторичной обмотки,

S1, S2 – площади сечения провода первичной и вторичной обмотки,

I1, I2 – действующая сила тока в первичной и вторичной обмотке,

j – плотность тока.

Подставив в полученное выражение значение количества витков в обмотках получим

Из последнего выражения легко получить основной конструктивный параметр сердечника трансформатора – произведение площади окна и площади сечения сердечника SOSeР в зарубежной литературе) , измеряется в см 4

Таким образом, выбираемый сердечник должен иметь параметр произведения площадей больше чем расчётный.

Коэффициент использования окна сердечника

Одним из параметров, влияющих на размер сердечника, является коэффициент использования окна сердечника ko, показывающий какое количество меди появится в окне сердечника. На величину данного параметра влияет несколько факторов: толщина изоляции провода и межслоевая изоляция, тип намотки (рядовая или «внавал»), эффективная площадь окна сердечника и человеческий фактор (качество намотки). Поэтому коэффициент заполнения ko рассчитывается по следующей формуле

где k1 – коэффициент, учитывающий наличие изоляции проводника обмотки,

k2 – коэффициент, учитывающий размер слоя обмотки в окне сердечника,

k3 – коэффициент, учитывающий величину эффективной площади окна,

k4 – коэффициент, учитывающий влияние изоляции.

Данные коэффициенты различны для разных типов сердечников и обмоточного провода, рассмотрим их подробнее.

Коэффициент k1, на который влияет толщина изоляции в зависимости от диаметра провода может иметь значение k1 = 0,94…0,67.

Сравнение относительной толщины изоляции проводов разного диаметра

Сравнение относительной толщины изоляции проводов разного диаметра.

На рисунке показано примерное сечение обмоточных проводов различного диаметра. Видно, что чем больше диаметр провода, тем большую величину имеет коэффициент k1. Найти значение коэффициента k1 можно по следующей формуле

где SCu – площадь сечения провода «по меди»,

SИ – площадь сечения провода с изоляцией.

Коэффициент k2, называемый также коэффициентом заполнения обмоткой. Он учитывает плотность укладки витков относительно друг друга. При этом из практики известно, что реальная длина обмоточного провода оказывается на 10…15% больше расчётной длины. Размер слоя обмотки зависит от натяжения провода, его диаметра и техники укладки. Для разных типов намотки данные представлены ниже

Диаметр провода, ммРядовая намоткаНамотка «внавал»
0,0635…0,08630,850,75
0,096…0,1090,860,8
0,124…0,01520,87
0,17…0,2670,88
0,294…0,4520,89
0,505…2,670,90,9

Укладка провода может производится двумя способами: «квадратурным» и «гексагональным», сущность которых показана на рисунке ниже

Способы укладки провода в слоях

Способы укладки провода в слоях: «квадратурный» (слева) и «гексагональный» (справа).

При этом теоретические коэффициенты укладки составляют:

— для «квадратурного»: 0,785;

— для «гексагонального»: 0,907.

Данные коэффициенты практически не достижимы, а следовательно они еще меньше. Ещё одним фактором влияющим на данный коэффициент является эффект вспучивания и закругления обмотки при ее намотке на сердечник прямоугольного сечения

Проявление эффекта вспучивания и закругления обмотки

Проявление эффекта вспучивания и закругления обмотки на прямоугольном сердечнике.

На рисунке показано, как идеальная намотка на сердечник с прямоугольным сечение отличается от реального. Количественно эта величина выражается в 15…20 % увеличении толщины реальной обмотки по сравнению с идеальной.

Таким образом, коэффициент заполнения обмоткой составляет

Коэффициент k3, определяющий какая доля площади окна может быть занята обмоткой за исключением изолирующих материалов. Конструкция обмоток трансформатора предполагает наличие межслоевой и межобмоточной изоляции, а также изоляции обмоток от сердечника, называемой полями и в общем случае она имеет вид показанный ниже

Обмотки трансформатора с изоляцией.

Обмотки трансформатора с изоляцией.

Размеры изоляции зависят от размера провода и имеет следующие размеры:

— для изоляционных полей от 1,57 до 6,35 мм;

— для межслойной изоляции от 0,013 до 0,254 мм.

Читайте так же:
Аварийное освещение на аккумуляторах

В связи с этим значение коэффициента k3 для броневого ленточного сердечника

— для броневого ферритового сердечника

— для стержневого сердечника

— для тороидального сердечника

Коэффициент k4, характеризующий влияние изоляции, и учитывает наличие большого количества вторичных обмоток со значительным количеством изоляции. В результате каждая вторичная обмотка уменьшает значение коэффициента k4 на 5…10%.

В качестве примера вычислим значение коэффициента заполнения окна сердечника kо для некоторых видов трансформаторов.

Так для проводника диаметром d = 0,8 мм коэффициент заполнения окна в тороидальном ленточном сердечнике составит:

Для трансформатора выполненного на ферритовом Ш-образном сердечнике с обмоткой выполненной проводом диаметром d = 0,2 мм, обмотка намотана «внавал»:

Данные результаты являются расчётными, и на практике величина данного коэффициента получается несколько меньше.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Как определить мощность трансформатора по сечению сердечника

2. Расчет сетевого (силового) трансформатора.

Классический расчет трансформатора достаточно сложен и требует знания почти всех характеристик, которые мы не можем знать, т.к. для использования мы берем всегда случайно попавший к нам сердечник. Поэтому, здесь для расчета трансфор-матора предлагается эмпирический метод, многократно проверенный радиолюби-телями и основанный на практическом применении.
Рис.1. Трансформатор. Общий вид и условное обозначение.

Чтобы не загружать данную страницу, вы можете почитать о принципе действия трансформатора, о параметрах и характеристиках отдельно.
Для расчета сетевого трансформатора необходимо знать исходные данные, а именно напряжения и токи каждой обмотки. Первым шагом является определение суммарной мощности, которая вычисляется как сумма мощностей, потребляемой каждой об-моткой (мощность — это произведение тока на напряжение), поэтому:
,где U 1 I 1 , U 2 I 2 и т.д. — произведения напряжений и то-ков вторичных обмоток (здесь ток — это максимальный ток нагрузки). Теперь определяем габаритную мощность , которая получается при делении на КПД:

КПД заранее знать нельзя, но ее можно определить по таблице 1:

Наиболее распространенные две формы сердечника:

Рис. 2. Формы сердечника трансформатора и расположение катушек на сердечнике

Зная габаритную мощность трансформатора, находим сечение рабочего керна его сердечника, на котором находится катушка:

S — получается в квадратных сантиметрах.
Теперь находим ширину рабочего керна сердечника по формуле:

По полученному значению а (см.) выбираем из имеющихся в наличии сердечников данное значение (можно больше), и находим толщину пакета с (см.):

Теперь определяем количество витков, приходящихся на 1 вольт напряжения:

Коэффициент К обычно лежит в пределах от 35 до 60. В первую очередь он зави-сит от свойств пластин стали сердечника. Для стали толщиной 0,35 мм, для сер-дечников С-образной формы, витых из тонкой стали, К=35. Для сердечников О-образной формы, собранный из П- или Г-образных пластин без отверстий по уг-лам, берем К=40. Если применяются пластины типа Ш без отверстий, то К=45, с отверстиями К=50. Для пластин Ш-образной формы с отверстиями, толщиной 0,35 мм, К=60. Т.е. значением К можно варьировать, но учитывать, что уменьшение К облегчает намотку, но ужесточает работу трансформатора. При применении плас-тин из высококачественной стали этот коэффициент можно немного уменьшить, а при низком качестве нужно увеличить.
Теперь можно найти количество витков первичной обмотки:

Для определения количества витков вторичной обмотки, необходимо вводить до-полнительный коэффициент m, учитывающий падение напряжения на ней:

Коэффициент m зависит от силы тока, протекающего по данной обмотке, табл.2:

Диаметр проводов вторичных обмоток можно найти:

где d-диаметр провода по меди, мм; I-сила тока в обмотке, А; p-коэффициент, учитывающий допустимый нагрев, зависящий от марки провода, табл. 3:

Силу тока в первичной обмотке можно определить так:

Пример расчета.
Нужно рассчитать трансформатор со следующими данными:
U1=6,3В, I1=1,5А; U2=12В, I2=0,3А; U3=120В, I3=0,059А. Находим суммарную мощность: Рсумм=6,3*1,5+12*0,3+120*0,059=20,13 Вт. С помощью табл.1 определяем габаритную мощ-ность: Рг=20,13/0,85=23,7 Вт. Находим сечение трансформатора:

Находим приближенное значение ширины рабочего керна:

Выбираем пластины трансформатора типа Ш-19, для которых а=1,9 см, и находим толщину пакета:
с=S/a=5,84/1,9=3,1 см.
Фактически полученное сечение рабочего керна сердечника:
S=ac=1,9*3,1=5,89 см2.
Определяем коэффициент К. Допустим, что используются пластины трансформа-торной стали типа Ш-19 без отверстий по углам. Тогда К=45.
Находим количество витков на 1 В:
n=K/S=45/5,89=7,64.
Определяем количество витков первичной обмотки при питании от сети напряжением 220 В:
WI=UI*n=220*7,64=1680 витков.
Находим из табл. 3 коэффициент m для каждой из вторичных обмоток:
при I1=1,5A, m1=1,04;
при I2=0,3A, m2=1,02;
при I3=0,059A, m3=1,00.
Определяем количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа:
W1=m1U1n=1,04*6,3*7,64=50 витков;
W2=m2U2n=1,02*12*7,64=94 витков;
W3=m3U3n=1,00*120*7,64=917 витков;
Находим силу тока в первичной обмотке:
I1=Pг/Uсети=23,7/220=0,108 А.
Находим диаметр провода первичной обмотки:

Находим диаметры проводов вторичных обмоток. Для этого составляем таблицу намоточных данных, где диаметры проводов по меди выбраны из ближайших больших стандартных значений, а диаметры проводов в изоляции взяты на 10% больше, чем диаметры проводов по меди, табл. 4.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector