Tehnik-ast.ru

Электро Техник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Найдите сто­ро­ну правильного шестиугольника, опи­сан­но­го около окружности, ра­ди­ус которой равен корень из 3

Найдите сто­ро­ну правильного шестиугольника, опи­сан­но­го около окружности, ра­ди­ус которой равен корень из 3?

Найдите сто­ро­ну правильного шестиугольника, опи­сан­но­го около окружности, ра­ди­ус которой равен корень из 3.

Оказывается есть такая формула r = a × под корнем3 / 2 , отсюда

а = 2r / под корнем 3 = 2×под корнем 3.

Около квадрата со стороной 5(корень из 2) описана окружность?

Около квадрата со стороной 5(корень из 2) описана окружность.

Найдите сторону шестиугольника, описанного возле этой окружности.

Радиус вписанной в квадрат окружности равен 2 корень из 2?

Радиус вписанной в квадрат окружности равен 2 корень из 2.

Найдите радиус окружности, описанной около этого квадрата.

Радиус окружности, описанной около правильного многоугольника, равен 8 см, радиус окружности, вписанной в него 4 см?

Радиус окружности, описанной около правильного многоугольника, равен 8 см, радиус окружности, вписанной в него 4 см.

Найти сторону многоугольника и количество его сторон.

Вокруг квадрата со стороной 6 см описана окружность?

Вокруг квадрата со стороной 6 см описана окружность.

Найдите : а) Радиус окружности.

Б)Сторону правильного треугольника, описанного около окружности.

Радиус окружности, вписанной в правильный шестиугольник, равен 8√3 см?

Радиус окружности, вписанной в правильный шестиугольник, равен 8√3 см.

Найдите сторону шестиугольника.

Радиус окружности вписанной в правильный шестиугольник, равен 12корень из 3 Найти сторону и площадь этого шестиугольника?

Радиус окружности вписанной в правильный шестиугольник, равен 12корень из 3 Найти сторону и площадь этого шестиугольника.

Около правильного шестиугольника описана окружность и в него вписана окружность?

Около правильного шестиугольника описана окружность и в него вписана окружность.

Найдите площадь меньшего круга и длину окружности, ограничевающей его, если радиус большей окружности равен 6 корней из 3 см.

Около квадрата со стороной a описана окружность, а около окружности описан правильный треугольник?

Около квадрата со стороной a описана окружность, а около окружности описан правильный треугольник.

Найдите сторону треугольника.

Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6.

Радиус окружности, описанной около квадрата, равен 16√2?

Радиус окружности, описанной около квадрата, равен 16√2.

Найдите длину стороны этого квадрата.

Радиус вписанной окружности правильного шестиугольника равен как 4 корня из 3 см?

Радиус вписанной окружности правильного шестиугольника равен как 4 корня из 3 см.

Чему равен радиус описанной окружности этого шестиугольника?

Если вам необходимо получить ответ на вопрос Найдите сто­ро­ну правильного шестиугольника, опи­сан­но­го около окружности, ра­ди­ус которой равен корень из 3?, относящийся к уровню подготовки учащихся 10 — 11 классов, вы открыли нужную страницу. В категории Математика вы также найдете ответы на похожие вопросы по интересующей теме, с помощью автоматического «умного» поиска. Если после ознакомления со всеми вариантами ответа у вас остались сомнения, или полученная информация не полностью освещает тематику, создайте свой вопрос с помощью кнопки, которая находится вверху страницы, или обсудите вопрос с посетителями этой страницы.

Х + 37 * 42 = 2031 х + 1554 = 2031 х = 2031 — 1554 х = 477 х * (415 — 327) = 440 88х = 440 х = 440 : 88 х = 5 х : (74 + 26) = 715 х : 100 = 715 х = 715 * 100 х = 71500.

Читайте так же:
Какую температуру выдерживает эпоксидка

Формулы для расчета периметра шестиугольника

Иногда возникает необычная для учащегося задача по нахождению периметра шестиугольника. Не всегда на этот вопрос можно ответить сразу. В этой статье мы рассмотрим подробным образом, как найти периметр шестиугольника согласно формулам, а также вычислить и находить его другими способами.

Описание фигуры

Непосредственно шестиугольник представляет собой плоскую фигуру, состоящую из шести отрезков, с расположением под углом 120 градусов относительно друг друга. Имеет научное название гексагон. Вокруг него или внутри можно вписать либо описать окружность. Между собой радиус и сторона многоугольника соотносятся по следующим формулам:

  1. R=2sin (pi/6)*a=a.
  2. r=0,866a.
  3. P=4*sqrt (3)*r или P=6*R.

Гексагон является очень популярной фигурой, ее имеют гайки, карандаши, соты, снежинки и многое другое. Является оптимальным вариантом для того, чтобы без пробелов замостить все пространство. Одним из примеров этого является Мостовая гигантов, образовавшаяся в результате соединения более чем 40 тысяч базальтовых колонн в результате извержения древнего вулкана и элегантно замостившая поверхность побережья в Северной Ирландии.

Поиски вышеописанного параметра гексагона являются простой, но в то же время довольно интересной задачей. Найдя периметр, можно убедиться в правильности замощенного пространства и отсутствии пробелов при составлении будущей документации.

До начала вычислений

Всем известно, что периметр плоской фигуры, к которой относится шестиугольник, является ничем иным, как длиной ограничивающей линии. Для нахождения периметра такой фигуры как гексагон, достаточно будет найти и сложить длины всех его сторон. Чтобы произвести эту процедуру, нужно измерить длины всех составляющих его отрезков. Значительно облегчается задача, если данная фигура имеет правильную форму. Разберем далее, как нужно искать периметр шестиугольника.

Первый вариант

Как вычислить

Инструментарий достаточно простой. Понадобятся всего лишь циркуль и линейка. Вычислять периметр гексагона нужно следующим образом: измерить линейкой длину каждой из 6 сторон и сложить полученные значения. Все измерения длин сторон должны иметь единую систему единиц, тогда достаточно будет сложить числовые значения. То есть, единица измерения параметра шестиугольника совпадет с аналогичными параметрами длин отрезков.

Например, имеются следующие отрезки: 2 сантиметра, 5,4,3,2 и 1 миллиметр. В этом случае нужно перевести 2 сантиметра в миллиметры из расчета 1 сантиметр равняется 10 миллиметрам и суммируете P=20+5+4+3+2+1=35 миллиметров. Таким образом рассчитывается периметр большинства видов шестиугольников.

Правильный шестиугольник

В случае, если шестиугольник имеет правильную форму, то расчет нужного параметра становится гораздо проще.

  1. Умножьте длину его стороны на 6 и вы получите нужное значение по формуле P=a*6, где a — сторона правильного шестиугольника.
  2. Например, у нас имеется фигура со стороной длиной 10 сантиметров, умножаем 10 на 6 и получаем в итоге 60 сантиметров в периметре.
  3. Также правильная фигура имеет уникальное свойство: радиус окружности, который описан вокруг такого шестиугольника, равен длине его стороны. Если вам известен радиус описанной окружности, то достаточно воспользоваться формулой в виде P=R*6, где R — радиус описанной окружности.
Читайте так же:
Лазерный чпу гравер по дереву

Например, известен прямоугольник, вписанный в окружность, имеющую диаметр 20 сантиметров. Тогда радиус будет в два раза меньше и составит 10 сантиметров. Полученную величину умножаем на 6 сторон и получаем периметр.

Варианты расчета

Иные варианты расчета

Если известен радиус вписанной в многоугольник окружности, рекомендуется использовать формулу P=4sqrt (3)*r, в которой r является радиусом вписанной окружности.

Можно высчитать периметр многоугольника, если в условии известна площадь. Площадь находится по формуле: S=3/2*sqrt (3)*a 2 , где S является площадью правильного шестиугольника. Далее находим из формулы a=sqrt (2/3*S/sqrt (3)). Найдя a, можно отыскать периметр, а именно P=6*a=6*sqrt (2/3*S/sqrt (3))=2*sqrt (2*s*sqrt (3)).

Другие способы измерения периметра шестиугольника можно найти в специализированной литературе и на особых порталах.

Шестиугольник относят к очень эффективной фигуре. Она встречается как в реальности, так и среди природных явлений. Если же вы боитесь, что не сможете правильно сами посчитать заданную величину, на помощь придут специальные онлайн-калькуляторы, в которых можно ввести необходимые данные для вычисления периметра. Удачной математической работы с поисками периметра для гексагона.

Как найти площадь правильного и неправильного шестиугольника?

Как найти площадь правильного и неправильного шестиугольника? alt=»thumbnail» />

Умение определять площадь различных фигур играет немалую роль в жизни каждого человека. Рано или поздно приходится иметь дело с этими знаниями. К примеру, в процессе ремонта помещения для определения необходимого количества рулонов обоев, линолеума, паркета, плитки в ванную или на кухню нужно уметь рассчитывать необходимую площадь.

Знаниями в области геометрии пользовались еще в древнем Вавилоне и других странах. На первых шагах к культуре всегда возникала необходимость измерить участок, расстояние. При строительстве первых значительных сооружений требовались умения выдерживать вертикаль, спроектировать план.

Роль эстетических потребностей людей также имела немалое значение. Украшение жилища, одежды, рисование картин способствовало процессу формирования и накопления сведений в области геометрии, которые люди тех времён добывали опытным путем, по крупицам и передавали из поколения в поколение.

Сегодня знания геометрии необходимы и закройщику, и строителю, и архитектору и каждому простому человеку в быту.

Поэтому нужно учиться рассчитывать площадь различных фигур, и помнить, что каждая из формул может пригодиться впоследствии на практике, в том числе, и формула правильного шестиугольника. Шестиугольником называется такая многоугольная фигура, общее количество углов которой равно шести.

Площадь правильного шестиугольника

Правильным шестиугольником называют шестиугольную фигуру, которая имеет равные стороны. Углы у правильного шестиугольника также между собой равны.

В повседневной жизни мы часто можем встретить предметы, имеющие форму правильного шестиугольника. Это и металлическая гайка, и ячейки пчелиных сот, и структура снежинки. Шестиугольными фигурами отлично заполняются плоскости. Так, например, при мощении тротуарной плитки мы можем наблюдать, как плитка укладывается одна возле другой, не оставляя пустых мест.

Свойства правильного шестиугольника

  • Правильный шестиугольник всегда будет иметь равные углы, каждый из которых составляет 120˚.
  • Сторона фигуры равняется радиусу описанной окружности.
  • Все стороны в правильном шестиугольнике равны.
  • Правильный шестиугольник плотно заполняет плоскость.

Как посчитать площадь правильного шестиугольника?

Площадь правильного шестиугольника можно рассчитать, разбив его на шесть треугольников, каждый из которых будет иметь равные стороны.

Читайте так же:
Brima arc 200 схема принципиальная электрическая

Для расчета площади правильного треугольника используется следующая формула:

Зная площадь одного из треугольников, можно легко рассчитать площадь шестиугольника. Формула для ее расчета проста: поскольку правильный шестиугольник — это шесть равных треугольников, следует площадь нашего треугольника умножить на 6.

Если провести от центра фигуры к любой из ее сторон перпендикуляр, получим отрезок, который называется апофема. Рассмотрим, как найти площадь шестиугольника при известной апофеме:

  1. Площадь = 1/2*периметр*апофему.
  2. Предположим, наша апофема равняется 5√3 см.
  1. Используя апофему, находим периметр: Поскольку апофема расположена перпендикулярно к стороне шестиугольника, то углы треугольника, созданного при помощи апофемы, будут равняться 30˚—60˚—90˚. Каждая сторона полученного треугольника будет соответствовать: x-x√3-2x, где короткая сторона, которая расположена напротив угла в 30˚— это x, длинная сторона, расположенная напротив угла в 60˚ — это x√3, а гипотенуза — 2x.
  2. Поскольку апофема представлена, как x√3, можно подставить ее в формулу a = x√3 и решить. Если, к примеру, апофема = 5√3, тогда подставим эту величину в формулу и получим: 5√3 см = x√3, или x = 5 см.
  3. Итак, короткая сторона треугольника равняется 5 см. поскольку эта величина является половиной длины стороны шестиугольника, умножаем 5 на 2 и получим 10 см, которая является длиной стороны.
  4. Зная длину стороны, умножим её на 6 и получим периметр шестиугольника:10 см х 6 = 60 см
  5. Подставим полученные результаты в нашу формулу:

Теперь осталось упростить ответ, чтобы избавиться от квадратных корней, а полученный результат укажем в квадратных сантиметрах:

½ * 60 см * 5√3 см =30 * 5√3 см =150 √3 см =259.8 см²

Видео о том, как найти площадь правильного шестиугольника

Площадь неправильного шестиугольника

Существует несколько вариантов определения площади неправильного шестиугольника:

  • Метод трапеции.
  • Метод расчета площади неправильных многоугольников при помощи оси координат.
  • Метод разбивания шестиугольника на другие фигуры.

В зависимости от исходных данных, которые вам будут известны, подбирается подходящий метод.

Метод трапеции

Площадь шестиугольника, имеющего произвольную (неправильную) форму, рассчитывается методом трапеции, суть которого состоит в разделении шестиугольника на отдельные трапеции и последующим вычислением площади каждой из них.

Метод с осями координат

Кроме этого, площадь неправильного шестиугольника можно рассчитать при помощи метода расчета площади неправильных многоугольников. Рассмотрим его на следующем примере:

Вычисление будем выполнять методом использования координат вершин многоугольника:

  1. На этом этапе следует сделать таблицу и записать координаты вершин x и y. Выбираем вершины в последовательном порядке по направлению против часовой стрелки, завершив конец списка повторной записью координаты первой вершины:

  1. Теперь следует умножить значения координаты х 1-й вершины на y 2-й вершины и продолжить таким образом умножение далее. Затем необходимо сложить полученные результаты. В нашем случае получилось 82:

  1. Последовательно умножаем значения координат y1-й вершины на значения координат х 2-й вершины. Суммируем полученные результаты. В нашем случае получилось 38:

  1. Вычитаем сумму, которую получили на четвертом этапе из суммы, которая получилась на третьем этапе: 82 – (-38) = 120

  1. Теперь необходимо разделить результат, который был получен на предыдущем этапе и найдем площадь нашей фигуры: S= 120/2 = 60 см²
Читайте так же:
Гак машина своими руками

Метод разбивания шестиугольника на другие фигуры

Каждый многоугольник можно разделить на несколько других фигур. Это могут быть треугольники, трапеции, прямоугольники. Исходя из известных данных, пользуясь формулами определения площадей перечисленных фигур, последовательно вычисляются их площади и затем суммируются.

Некоторые неправильные шестиугольники состоят из двух параллелограммов. Для определения площади параллелограмма следует умножить его длину на ширину и затем сложить две уже известные площади.

Видео о том, как найти площадь многоугольника

Площадь равностороннего шестиугольника

Равносторонний шестиугольник имеет шесть равных сторон и является правильным шестиугольником.

Площадь равностороннего шестиугольника равняется 6 площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны, поэтому для нахождения площади такого шестиугольника достаточно будет знать площадь хотя бы одного треугольника.

Для нахождения площади равностороннего шестиугольника используется, конечно же, формула площади правильного шестиугольника, описанная выше.

А Вы знали, как найти площадь шестиугольника? Как думаете, где эти знания пригодятся Вам в жизни? Поделитесь своим мнением в комментариях.

Правильные многоугольники: радиус вписанной и описанной окружности. Задание В6

Для того, чтобы научиться решать задачи из задания В6 на нахождение радиуса окружности, вписанной в правильный многоугольник, или описанной около него, не нужно запоминать большое количество формул. Нужно только вспомнить, как соотносятся стороны и углы в прямоугольном треугольнике.

И применить эти знания в немного другой ситуации.

Окружность называется описанной около многоугольника, если она проходит через все его вершины. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам многоугольника.

Окружность называется вписанной в многоугольник, если она касается всех сторон многоугольника. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

В правильном многоугольнике центр вписанной и описанной окружности совпадают.

Посмотрим, как соотносятся между собой радиусы вписанной и описанной окружности и сторона правильного многоугольника. Рассмотрим фрагмент правильного многоугольника:

Здесь

АВ — сторона правильного треугольника

ОК — радиус вписанной окружности

ОВ, ОА — радиусы описанной окружности

Очевидно, что треугольник АОВ — равнобедренный, поэтому ОК является высотой, биссектрисой и медианой.

Рассмотрим треугольник ОКВ. С его помощью мы найдем, как соотносятся между собой сторона правильного многоугольника, радиус вписанной и описанной окружности.

Угол AOB= <360^<circ data-lazy-src=

tg<alpha data-lazy-src=

По условию r=sqrt<8 data-lazy-src=

<alpha data-lazy-src=

Угол АОВ=<360^<circ data-lazy-src=

Треугольник АОВ равнобедренный с углом 60^<circ data-lazy-src=

Ответ: 24.

Запомните : в правильном шестиугольнике сторона равна радиусу описанной окружности.

3 . Задание B7 (№ 27917)

Найдите радиус окружности, вписанной в правильный шестиугольник со стороной sqrt<3 data-lazy-src=

Рассмотрим треугольник ВОК:

<alpha data-lazy-src=

<alpha data-lazy-src=

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector