Tehnik-ast.ru

Электро Техник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Крабовые Ручки ♋ Almois Jobbing Official

Крабовые Ручки ♋ Almois Jobbing Official

Журнал о технических устройствах и технологиях. Ковыряние в бытовой технике, электронике: что внутри, как это работает, опыт эксплуатации. Выбор лучшего товара — отзывы, достоинства и недостатки. ПоДЕЛОчная: ремонт (техники, электроники) своими руками, сделай сам, самоделки. Полезные советы, лайфхаки.

Крабовые ручки | Almois Jobbing Official

Как расширить диапазон измерения ёмкости конденсаторов мультиметра

Имеем мультиметр Mastech MS8222H, который умеет измерять ёмкость конденсаторов (и индуктивность катушек; т. е. является LC-метром):

Мультиметр Mastech MS8222H - простое приспособление для увеличения диапазона измерения ёмкости конденсаторов

Фото 1. Мультиметр Mastech MS8222H с LC-метром на борту

Здесь переключатель режимов установлен в положение измерения ёмкости конденсаторов, диапазон до 20 мкФ. И это первая проблема — в электронной технике дохнут как правило электролитические конденсаторы больших ёмкостей, порядка 4700 мкФ, а тут только до 20…

Вторая проблема — это две щёлки возле меток диапазонов ёмкостей; это гнездо для всовывания туда выводов конденсатора, причём контакты там находятся глубоко; т. е. не только чип-конденсаторы так не измерить, но и короткие выводы конденсатора — проблема; а также ещё хотелось бы иметь здесь щупы, чтобы производить измерение конденсаторов на плате без отпаивания их.

Ну, так вот, пацан задумал — пацан сделал… приспособление:

Расширение диапазона и возможностей мультиметра Mastech с помощью самодельной площадки и щупов

Фото 2. Самодельное приспособление для удобства измерения ёмкости конденсаторов

С обратной стороны:

Приспособление универсальное самодельное для измерения ёмкости конденсаторов

Фото 3. Обратите внимание на необходимую длину контактов!

Что здесь? Снизу — длинные (16 мм) лепестки контактов из бронзовых пластин (контакты от какого-то большого прибора), чтобы достать до контактов в глубине гнезда. Контактные площадки 1 и 2 предназначены для измерения конденсаторов, ёмкость которых менее 20 мкФ. Длинная контактная площадка 2 позволяет измерять конденсаторы с короткими и широко расставленными выводами:

Измерение ёмкости конденсатора большой ёмкости с широко рсставленными выводами обычным мультиметром - приспособление для мультиметра

Фото 4. Измерение конденсатора с широко расставленными выводами

Два конденсатора [спаяны параллельно, суммарная ёмкость 19.1 мкФ] между контактом 1 и 3 соединяются последовательно с измеряемым конденсатором, который прикладывается к контактам 2 и 3, и далее по показанию мультиметра (D) и таблице снизу (значения рассчитаны на калькуляторе по формуле 1/D= 1/X+1/19.1) находим значение X ёмкости испытуемого. Например, если дисплей кажет 18.35, значит ёмкость испытуемого 470 мкФ.

Расстояние между площадками 1 и 2 (да и 2 и 3 на всякий случай) всего 1 мм для измерения ёмкости чип-конденсаторов:

Измерение ёмкости чип-конденсатора с помощью самодельного приспособления к мультиметру

Фото 5. Измеряем ёмкость чип-конденсатора

Как такое сделать: выпилить кусочек платы текстолита с медью -> просверлить отверстия под 3 пина -> вытравить лишнюю медь хлорным железом -> залудить -> припаять выводы и конденсаторы.

Торчащие из выводов 1, 2, и 3 игольчатые пины нужны для подсоединения щупов следующим образом:

Приспособление с щупами для измерения ёмкости конденсаторов прямо на плате - расширение возможностей мультиметра

Фото 6. Подключение щупов к пинам приспособления

Теперь можно измерять ёмкость любых кондеров прямо на плате исследуемого/ремонтируемого устройства, не выпаивая их.

Как показала практика и опыт использования сей самоделки — страшно полезная штука оказалась. Прям жуть как удобно и необходимо по жизни. Это просто кошмар какой-то было жить без неё. Только покупка транзистор-тестера GM328A остановила весь этот ужас.

Комментарии (4):

добрый день!
меня тоже расстроило максимальное измерение ёмкости мультиметра, начал гуглить как расширить диапазон и наткнулся на данный сайт.. у меня вопрос теперь, ну никак я не могу понять как Вы вышли на этиданные, а именно:
вот Вы пишите формулу 1/D= 1/X+1/19.1
если верить ей тогда должно получится:
0,098039216 = 0,045454545+0,051282051
0,098039216 не равно 0,096736597
ещё какие-то данные участвуют в расчёте? что ещё должно быть в этом расчёте?

Читайте так же:
Ленточная шлифмашина своими руками видео

Almois Jobbing

Только эта формула…
В данном случае 0,098039216 равно 0,096736597, потому что первая цифра означает 10.2 мкФ, а вторая 10.3, в то время как точность измерения этого мультиметра ± 5%, т.е. это ± 0.5

Молодец. Спасибо. Таблица рабочая. Сделал на мультиметр MB890F.

Приветствую всех! При пересчёте используйте данную формулу (для последовательно включённых емкостей и параллельно включённых резисторов) — С (либо R) искомая = С известная (в данном случае впаянная в платку) / ((С известная (в данном случае впаянная в платку) / С общ. (согласно показанию прибора) — 1).

Таблицы максимальных значений ESR у электролитических конденсаторов

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Таблицы максимальных значений ESR у электролитических конденсаторов

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод – обкладка.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;
  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;
  • Контактное сопротивление между обкладками и выводами;
  • Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR, что означает «низкое ЭПС».

При ремонте любой аппаратуры необходимо производить замеры ESR при помощи специального измерительного прибора — ESR-метра. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На сегодняшний день самый доступный — это универсальный тестер радиокомпонентов LCR-T4 Tester, функционал которого поддерживает замер ESR конденсаторов. В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

Читайте так же:
Изделия из металла холодная ковка

Максимально допустимые значения ESR электролитических конденсаторов приведены в таблицах ниже.

1. Максимально-допустимые ESR конденсаторов Китайского и японского производства

Таблицы максимальных значений ESR у электролитических конденсаторов

2. ESR новых электролитических конденсаторов замеренных тестером LCR T4

Таблицы максимальных значений ESR у электролитических конденсаторов

В качестве образцов для измерения ESR (Таблица №2) использовались новые конденсаторы разных производителей.

3. Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214.

Таблицы максимальных значений ESR у электролитических конденсаторов

Как видно, некоторые ячейки таблицы №3 пусты. Для конденсаторов ёмкостью до 10 мкФ максимально допустимой величиной ESR приемлемо считать 4 – 5 Ом.

Простой тестер электролитических конденсаторов

Каждому, кто регулярно занимается ремонтом электронной техники, известно, какой процент неисправностей выпадает на долю дефектных электролитических конденсаторов. При этом если существенную потерю емкости удается диагностировать при помощи обычного мультиметра, то такой весьма характерный дефект как возрастание эквивалентного последовательного сопротивления (ЭПС, англ. ESR) обнаружить без специальных устройств принципиально невозможно.

Долгое время при проведении ремонтных работ мне удавалось обходиться без специализированных приборов для проверки конденсаторов путем подстановки параллельно «подозреваемым» конденсаторам заведомо исправных, в звуковой аппаратуре использовать проверку тракта прохождения сигнала на слух при помощи наушников, а также использовать методы косвенного дефектирования, основанные на личном опыте, накопленной статистике и профессиональной интуиции. Когда же пришлось приобщиться к массовому ремонту компьютерной техники, в которой на совести электролитических конденсаторов оказывается добрая половина всех неисправностей, необходимость контроля их ЭПС стала без преувеличения стратегической задачей. Существенным обстоятельством явился также тот факт, что в процессе ремонта неисправные конденсаторы очень часто приходится заменять не новыми, а демонтированными из других устройств, и их исправность совсем не гарантирована. Поэтому неизбежно наступил момент, когда пришлось всерьез задуматься о том, чтобы разрешить эту проблему обзаведшись, наконец, ЭПС-метром. Поскольку о покупке подобного прибора по ряду причин речь заведомо не шла, напрашивался однозначный выход – собрать его самостоятельно.

Анализ схемотехнических решений построения ЭПС-метров, имеющихся на просторах Сети, показал, что спектр подобных устройств чрезвычайно широк. Они отличаются функциональностью, напряжением питания, применяемой элементной базой, частотой генерируемых сигналов, наличием/отсутствием моточных элементов, формой отображения результатов измерений и т.п.

Основными критериями выбора схемы являлись ее простота, низкое напряжение питания и минимальное количество моточных узлов.

С учетом всей совокупности факторов было принято решение повторить схему Ю. Куракина, опубликованную в статье из журнала «Радио» (2008 г., №7, с.26-27). Ее отличает целый ряд положительных особенностей: предельная простота, отсутствие высокочастотных трансформаторов, малый потребляемый ток, возможность питания от одного гальванического элемента, низкая частота работы генератора.

Детали и конструкция. Собранный на макете прибор заработал сразу и после нескольких дней практических экспериментов со схемой было принято решение о его окончательной конструкции: прибор должен быть предельно компактным и представлять собой нечто вроде тестера, позволяющего максимально показательно отображать результаты измерений.

Читайте так же:
Как починить наушники для телефона без паяльника

С этой целью в качестве измерительной головки был использован стрелочный индикатор типа М68501 от магниторадиолы «Сириус-324 пано» с током полного отклонения 250 мкА и оригинальной шкалой, отградуированной в децибелах, который оказался под рукой. Позднее в Сети мною было обнаружены сходные решения с применением магнитофонных индикаторов уровня в исполнении других авторов, что подтвердило правильность принятого решения. В качестве корпуса прибора был использован корпус от неисправного зарядного устройства для ноутбука LG DSA-0421S-12, идеально подходящий по габаритам и имеющий, в отличие от многих своих собратьев, легкоразборный корпус, скрепляющийся шурупами.

В устройстве использованы исключительно общедоступные и широкораспространенные радиоэлементы, имеющиеся в хозяйстве любого радиолюбителя. Итоговая схема полностью идентична авторской, исключение составляют лишь номиналы некоторых резисторов. Сопротивление резистора R2 в идеале должно составлять 470 кОм (в авторском варианте – 1МОм, хотя при этом примерно половина хода движка все равно не используется), но резистора такого номинала, имеющего необходимые габариты, у меня не нашлось. Однако этот факт позволил доработать резистор R2 таким образом, чтобы он одновременно являлся и выключателем питания при повороте его оси в одно из крайних положений. Для этого достаточно соскрести острием ножа часть резистивного слоя у одного из крайних контактов «подковки» резистора, по которой скользит его средний контакт, на участке длиной примерно 3…4 мм.

Номинал резистора R5 подбирается исходя из тока полного отклонения используемого индикатора таким образом, чтобы даже при глубоком разряде элемента питания ЭПС-метр сохранял свою работоспособность.

Тип применяемых в схеме диодов и транзисторов абсолютно некритичен, поэтому предпочтение было отдано элементам, имеющим минимальные габариты. Гораздо более важен тип применяемых конденсаторов – они по возможности должны быть максимально термостабильны. В качестве С1…С3 были использованы импортные конденсаторы, которые удалось отыскать в плате от неисправного ИБП компьютера, обладающие очень малым ТКЕ и имеющие гораздо меньшие габариты в сравнении с отечественными К73-17.

Дроссель L1 выполнен на ферритовом кольце с магнитной проницаемостью 2000НМ, имеющем размеры 10×6×4,6 мм. Для частоты генерации 16 кГц необходимо 42 витка провода ПЭВ-2 диаметром 0,5 мм (длина проводника для намотки составляет 70 см) при индуктивности дросселя 2,3 мГн. Разумеется, можно использовать любой другой дроссель с индуктивностью 2…3,5 мГн, что будет соответствовать частотному диапазону 16…12 кГц, рекомендованному автором конструкции. У меня при изготовлении дросселя была возможность воспользоваться осциллографом и измерителем индуктивности, поэтому необходимое количество витков я подобрал экспериментальным путем исключительно из соображений вывести генератор точно на частоту 16 кГц, хотя практической необходимости в этом, конечно же, не было.

Щупы ЭПС-метра выполнены несъемными – отсутствие разъемных соединений не только упрощает конструкцию, но и делает ее более надежной, устраняя потенциальную возможность нарушения контактов в низкоомной измерительной цепи.

Печатная плата устройства имеет габариты 27×28 мм, ее чертеж в формате .LAY6 можно скачать по ссылке https://yadi.sk/d/CceJc_CG3FC6wg. Шаг сетки – 1,27 мм.

Компоновка элементов внутри готового устройства приведена на фото.

Результаты испытаний. Отличительной особенностью примененного в устройстве индикатора явилось то, что диапазон измерения ЭПС составил от 0 до 5 Ом. При проверке конденсаторов значительной емкости (100 мкФ и более), наиболее характерных для фильтров цепей питания материнских плат, блоков питания компьютеров и телевизоров, зарядных устройств ноутбуков, преобразователей сетевого оборудования (коммутаторов, маршрутизаторов, точек доступа) и их выносных адаптеров этот диапазон чрезвычайно удобен, поскольку шкала прибора является максимально растянутой. На основании усредненных экспериментальных данных для ЭПС электролитических конденсаторов различной емкости, приведенных в таблице, отображение результатов измерений оказывается очень наглядным: конденсатор можно считать исправным лишь в том случае, если стрелка индикатора при измерении располагается в красном секторе шкалы, соответствующем положительным значениям децибелов. Если стрелка располагается левее (в черном секторе), конденсатор из указанного выше диапазона емкостей является неисправным.

Читайте так же:
Как отличить железо от чугуна

Разумеется, прибором можно тестировать и конденсаторы малой емкости (примерно от 2,2 мкФ), при этом показания прибора будут находиться в пределах черного сектора шкалы, соответствующего отрицательным значениям децибелов. У меня получилось примерно следующее соответствие ЭПС заведомо исправных конденсаторов из стандартного ряда емкостей градуировке шкалы прибора в децибелах:

Выводы и рекомендации. Эксплуатация собранного по схеме Ю.Куракина образца ЭПС-метра позволила сделать несколько важных выводов в отношении целесообразности его изготовления.

Прежде всего, эту конструкцию следует рекомендовать начинающим радиолюбителям, еще не имеющим достаточного опыта в конструировании радиоаппаратуры, но осваивающим азы ремонта электронной техники. Низкая цена и высокая повторяемость данного ЭПС-метра выгодно отличают его от более дорогих промышленных устройств аналогичного назначения.

Основными достоинствами ЭПС-метра можно считать следующие:

— чрезвычайная простота схемы и доступность элементной базы для ее практической реализации при сохранении достаточной функциональности устройства и его компактности, отсутствие необходимости в высокочувствительном регистрирующем приборе;

— отсутствие необходимости в наладке, требующей наличия специальных измерительных приборов (осциллографа, частотомера);

— низкое напряжение питания и, соответственно, дешевизна его источника (не требуется дорогостоящая и малоемкая «Крона»). Устройство сохраняет свою работоспособность при разряде источника даже до 50% его номинального напряжения, то есть имеется возможность использовать для его питания элементы, которые уже не способны нормально функционировать в других устройствах (пультах ДУ, часах, фотоаппаратах, калькуляторах и т.п.);

— низкий ток потребления – около 380 мкА в момент измерения (зависит от используемой измерительной головки) и 125 мкА в режиме ожидания, что существенно продлевает срок эксплуатации источника питания;

— минимальное количество и предельная простота моточных изделий – в качестве L1 можно использовать любой подходящий дроссель или легко изготовить его самостоятельно из подручных материалов;

— сравнительно низкая частота работы генератора и возможность ручной установки нуля, позволяющие использовать щупы с проводами практически любой разумной длины и произвольного сечения. Это преимущество является неоспоримым в сравнении с универсальными цифровыми тестерами элементов, использующими для подключения проверяемых конденсаторов ZIF-панель с глубоким расположением контактов;

— визуальная наглядность отображения результатов тестирования, позволяющая быстро оценить пригодность конденсатора для дальнейшего использования без необходимости точной численной оценки величины ЭПС и ее соотнесения с таблицей значений;

— удобство эксплуатации — возможность выполнения непрерывных измерений (в отличие от цифровых ESR-тестеров, требующих нажатия кнопки измерения и выдержки паузы после подключения каждого поверяемого конденсатора), что существенно ускоряет работу;

— необязательность предварительной разрядки конденсатора перед измерением ЭПС.

К недостаткам прибора можно отнести:

— ограниченную функциональность в сравнении с цифровыми ESR-тестерами (отсутствие возможности измерения емкости конденсатора и процента его утечки);

— отсутствие точных численных значений результатов измерений в омах;

Читайте так же:
Лазерный уровень для выравнивания стен и пола

Пробник ESR конденсаторов

Пробник ESR конденсаторов так уж получилось, что в настоящее время максимум отказов аппаратуры приходится на электролитические конденсаторы. Особенно это касается импульсных источников питания, схем развертки, схем УМЗЧ, мощных преобразователей напряжения. Известным с дедовских времен способом — подключаем к конденсатору омметр и смотрим как циферки бегут можно удостовериться только в наличии емкости и очень примерно оценить ток утечки.

Пробник ESR конденсаторов

Можно специальным прибором измерить емкость конденсатора. Но большинство неисправных электролитических конденсаторов эти проверки успешно проходят, потому что причиной неисправности чаще всего бывает не отсутствие или сильное понижение емкости, не ток утечки, а высокая величина ESR. Эту величину можно понять, как постоянное сопротивление, включенное последовательно конденсатору. Это сопротивление уменьшает ток зарядки/разрядки конденсатора и при значительной величине делает конденсатор непригодным для работы в схемах где требуется большой ток зарядки / разрядки, например, в схеме подавления пульсаций выпрямителя. Или в схеме кадровой развертки телевизора. А также в других схемах.

Практически просто так измерить ESR конденсатора проблематично, потому что это сопротивление эквивалентно включенному ему последовательно, а не параллельно, как в случае тока утечки. Можно измерить общее сопротивление конденсатора на переменном токе, но это будет величина, состоящая из активной и реактивной составляющей. Нужно как-то выбрать режим измерения так что бы величина емкостного сопротивления была пренебрежимо мала. Если учесть, что электролитические конденсаторы, о которых идет речь, обладают значительной емкостью (не менее 100 мкФ), то занизить до пренебрежимо малой величины емкостное сопротивление можно повышением частоты переменного тока, на котором производится измерение до величины более 100 кГц. Как известно, емкостное сопротивление с увеличением частоты снижается, и здесь при емкости от 100 мкФ и более его величиной уже можно будет пренебречь. А вот активная составляющая от частоты не зависит.

Поэтому, измерять ESR можно по падению переменного напряжения на измеряемой емкости, но при условии, что частота переменного напряжения будет достаточно высока. На рисунке в статье показана схема пробник ESR конденсаторов электролитических. На операционном усилителе А1.1 собран генератор переменного напряжения частотой 100 кГц. Переменное напряжение с него через резисторы R5 и R6 поступает на конденсатор, подлежащий испытанию (Сх). Сопротивление этого конденсатора совместно с сопротивлением выше указанных резисторов (плюс не электролитической емкости С2) образует делитель напряжения. Напряжение на Сх получается прямо пропорциональным его величине ESR.

Теперь это напряжение нужно измерить милливольтметром на ОУ А1.2 и измерительной головке Р1. ОУ усиливает переменное напряжение, снятое с Сх, затем следует детектор на диодах VD2 и VD3 и через R11 -микроамперметр постоянного тока со шкалой 100 мкА. Питается пробник ESR конденсаторов от «плоской батареи» напряжением 4,5V. Настройка пробник ESR конденсаторов сводится к калибровке. Нужны постоянные резисторы сопротивлением от 0,5 до 20 Ом. Устанавливаете вместо Сх резистор 20 Ом и резистором R11 ставите стрелку микроамперметра на максимум. Затем резисторы других сопротивлений и делаете соответствующие метки на шкале микроамперметра. Недостаток пробник ESR конденсаторов в том, что при отсутствии Сх стрелка зашкаливает, поэтому сначала подключайте Сх, а потом уже питание выключателем С1.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector