Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где применяют нержавеющую сталь

Где применяют нержавеющую сталь?

Где применяют нержавеющую сталь?

Долгий срок службы, оптимальная прочность, эстетичный внешний вид, безвредность для человека и окружающей среды — все это основные преимущества нержавеющей стали. Этот материал отличается от других сплавов на основе железа одним важным свойством: он не подвержен влиянию влаги и не ржавеет. А это, в свою очередь, открывает широкие возможности для применения.

Используют нержавеющую сталь в разных областях — от производства до обыкновенной кухни, от строительства до нефтехимии. Именно нержавейку используют в приборо- и машиностроении: детали из нее обеспечивают точную работу и механических часов, и сложных электронных устройств.

Сферы применения нержавейки

Нержавеющая сталь используется в пищевой и химической промышленности, в нефтехимии и машиностроении, строительстве и при создании сложного оборудования. Материал отличается высокой стойкостью к агрессивным средам и служит достаточно долго.

Применение в доме

Из стали изготавливают многие из тех инструментов и домашней утвари, которой мы пользуемся.

В частности, из нержавейки изготавливают:

  • Оборудование для дома: кухонные плиты, холодильники, микроволновки и другую технику.
  • Сантехнику: как смесители, так и мойки и ванны.
  • Посуду: половники, ложки, ножи, тарелки, кастрюли, сковороды.
  • Элементы отделки.
  • Части мебели: петли, ножки, пружины в матрасах и кроватях и многое другое.

Нержавеющая сталь не реагирует на воду и жир, и она абсолютно безопасна для здоровья взрослых людей и детей, домашних животных.

Строительство

В строительстве нержавейку используют при изготовлении окон, кровли, ограждений, водостоков, панорамного остекления и многих других элементов зданий и архитектуры. Широко используют сталь и при создании быстровозводимых зданий, различных построек, отделки интерьеров.

Строительство нержавейкиАвтомобилестроение

Нержавейка — оптимальный материал для автомобилей. Из него изготавливают ключевые узлы: коробку переключения передач, двигатель, карданный вал и многое другое. При изготовлении самого кузова такую сталь, увы, не использует, и это сказывается на качестве кузовных деталей: со временем они покрываются коррозией.

Применяют материал и для спецтехники, и для промышленного оборудования — станков, конвейерных линий и т.д.

Химическая промышленность

В химической промышленности важно, чтобы материал, который контактирует с реагентами (кислотами, щелочами, солями), не подвергался их воздействию. Нержавеющая сталь подходит идеально. Для баков, труб и различных емкостей используют высоколегированную сталь с большим содержанием молибдена. Такой металл способен выдержать серьезную нагрузку.

Пищевая промышленность

При производстве продуктов питания, обработке сырья, который после пойдет в пищу, нужно использовать только нейтральные материалы, не выделяющие в окружающую среду и само сырье вредные вещества. Нержавейка — один из немногих металлов, которые можно использовать для производства продуктов питания. Рекомендуют применять сталь с небольшим содержанием никеля и хрома.

Транспортировка жидкостей и газов различного типа

К транспортировке жидкостей предъявляют особые требования. Резервуар или трубы, через которые эти жидкости проходит, не должны реагировать на их воздействие и как-либо изменять свои свойства. Чтобы обеспечить безопасность транспортировки и сохранить сами материалы, используют нержавеющую сталь. Из нее делают как трубопроводы для нефте- и газопроводов, так и резервуары для автомобилей и железнодорожного транспорта.

Производство бумаги, тканей и других изделий

Практически все станки, которые используют на предприятиях, изготовлены либо из нержавеющей стали, либо со стальными деталями. Нержавейка используется везде, где станок или резервуар контактирует с водой или иной жидкостью. Большей частью сталь используют для производства труб.

Производство бумаги, тканей и других изделийПроизводство фильтров и очистных систем

Нержавеющая сталь, производство которой само по себе довольно грязное, применяется в рамках экологических проектов и систем. В частности, из нее делают элементы фильтров, которые устанавливают на заводские трубы. Благодаря стальным системам воздух, земля, почва вокруг предприятий не загрязняется.

Из чего состоит нержавейка

Материал изготовления смесителя это основной фактор, наравне с механизмом управления, которые необходимо учесть при выборе. В данной статье мы подробно расскажем об особенностях каждого материала.

На изделиях из низкокачественных материалов со временем образуются трещины, слезает хромированное покрытие, образовывается ржавчина и налет внутри.

Самые популярные материалы для производства смесителей:

  • ЦАМ (ZAMAK);
  • латунь с добавлением свинца;
  • нержавеющая сталь.
Читайте так же:
Как сделать лебедку для мотоцикла

Так как сантехника не подлежит обязательной сертификации и проверке качества, то она может изготавливаться из любых материалов и поставляться на торговые площадки. С этим связано наличие огромного количества низкокачественной продукции «базарного» типа.

Единственным гарантом выступают стандарты качества (международный ISO, европейский CEN, Российский ГОСТ и другие), указанные в сопровождающей документации к изделию, или ищите соответствующие иконки на коробке.

Логотип международного стандарта качества

Логотип европейского стандарта качества

Логотип российского стандарта качества

Смесители из цинково-алюминиево-медного сплава (ЦАМ)

ЦАМ — смесь цинка, алюминия и меди (ZAMAK в европейской классификации). Такой сплав часто путают с силумином (сплава алюминия с кремнием) ввиду внешней схожести. Сразу заметим, что из силумина смесители не производятся, а изделия из ЦАМ ошибочно называют силуминовыми.

Температура плавления ZAMAKа в два раза ниже, чем латуни, что удешевляет производство и позволяет изготавливать дешевые модели смесителей. При плавлении цинк выгорает, образуя неровности на поверхности изделия, что со временем сказывается на внешнем виде.

Значит ли это, что смесители из цинкового сплава плохого качества?

Нет, это не так. Даже именитые производители используют ЦАМ, но изготавливают из него только те элементы, которые напрямую не контактируют с водой (например, вентили (маховики) или рычаги управления), что удешевляет производство.

Корпус обязательно должен быть изготовлен либо из латуни, либо из нержавеющей стали. Связано это с тем, что содержащиеся в водопроводной воде хлор и другие присадки разъедают ZAMAK, впоследствии чего он ржавеет и трескается, а в трещинах начинает скапливаться налет.

Понять, что смеситель изготовлен из ЦАМ можно следующими способами:

  • посмотрев в документации из чего сделано изделие;
  • по весу: такой сплав легче латуни и стали;
  • по цвету: ZAMAK светлее, чем латунные модели;
  • по нанесению хрома: из-за выгорания цинка при плавлении, образуется неровная поверхность.

Фото смесителя из ЦАМ

Смесители из латуни

Латунь — сплав меди с цинком. Марки этого метала, помимо изготовления сантехнических приборов, используются в судо- и машиностроении, в деталях химической аппаратуры, а также в составе коррозионностойких деталей.

Она обладает хорошей теплопроводностью, устойчивостью к образованию коррозии и ржавчины, способностью к прочному сцеплению краски с поверхностью, а также хорошими антифрикционными, механическими и технологическими свойствами. Из минусов — сложность плавления и обработки латуни, что сказывается на конечной цене смесителя.

Значит ли это, что смесители из латуни надежные?

Это не совсем так ввиду того, что в соответствии с требованиями ГОСТа, смесители изготавливаются из латуни марки «ЛЦ40СД», у которой есть свои свойства. Это обусловлено тем, что для улучшения жидкотекучести (упрощающей процесс литья металла), производители добавляют свинец. В этой марке допустимая примесь свинца до 2,5% (такое содержание не вредит и не ухудшает свойств латуни).

Когда производители злоупотребляют в добавлении свинца свыше указанной нормы, на конечном изделии появляются «горячие трещины». Из-за этих трещин смеситель может попросту лопнуть спустя время. Внешне, латунь с превышенным содержанием свинца, отличается пористой структурой. На такой материал плохо ложится и держится хром (краска) благодаря чему покрытие трескается и «слезает».

Чтобы выбрать хороший смеситель, обратите внимание на внешний вид и качество нанесения покрытия. У качественных латунных моделей идеально ровная, блестящая, почти зеркальная поверхность.

Фото смесителя из латуни

Смесители из нержавеющей стали

Стоит сразу заметить, что нержавеющая сталь — не определенный материал, а обобщенный вид легированных (с добавлением в состав других материалов, для улучшения химических и физических свойств) сталей. Производители сантехники применяют нержавеющую сталь в изделиях, которые требуют повышенной механической устойчивости, например для кухонь и общественных мест.

Связано это с тем, что такие модели устойчивей к физическим повреждениям и химическому воздействию, по сравнению с латунными. Однако, нержавеющая сталь сложнее в обработке и литье, что сказывается на цене.

На поверхность из нержавеющей стали, как правило, не наносится хромированное покрытие. Вместо этого, корпус тщательно полируются, что экономит на процессе производства без потери качества.

Смесители из нержавеющей стали используются на производственных предприятиях, в общественных местах и кухнях кафе и ресторанов. Применение таких моделей в частных домах не пользуется популярностью из-за небольшого количества дизайнерских оформлений и высокой ценой (по сравнению с латунными моделями). Также, в частной ванной комнате или в кухне смеситель не подвергается «особым» нагрузкам, поэтому использование моделей из нержавейки в таких местах не рационально.

Читайте так же:
Как сплести игрушку из резинок без станка

Нержавеющие хромистые (ферритные и мартенситные) стали.

Нержавеющие (коррозионностойкие) и жаростойкие стали и сплавы, основа которых железо и никель — это важнейшая категория специальных конструкционных материалов, которая нашла применение во многих отраслях промышленности. Повышенная стойкость против равномерной коррозии в широкой гамме коррозионно-активных сред различной степени агрессивности — отличительная особенность нержавеющих и жаростойких сталей и сплавов.

Многие нержавеющие стали кроме того обладают стойкостью против специальных видов коррозии, таких как межкристаллитная, питтинговая, щелевая коррозии и коррозионное растрескивание.

Основной легирующий элемент, придающий стали коррозионную стойкость в окислительных средах это Cr — хром. Хром способствует образованию на поверхности нержавеющей стали защитной плотной пассивной пленки окисла Сr2O3. Достаточная для придания коррозионной стойкости нержавеющей стали толщина пленки образуется при добавлении к сплаву не менее 12,5% хрома. Хром и железо в сплаве образуют твердый раствор.

Стоимость хрома сравнительно невысока, он не является дефицитным компонентом. Поэтому хромистые нержавеющие стали относительно недорогие и, обладая достаточно хорошим комплексом технологических свойств, находят широчайшее применение в промышленности. Из хромистых нержавеющих сталей изготавливаются элементы оборудования, работающего при высоком давлении и температуре в условиях воздействия агрессивных сред.

Хром, которым легируются нержавеющие стали обеспечивает не только коррозионную стойкость сталей в окислительных средах, но и формирует их структуру, механические и технологические свойства и жаропрочность. Образуемый хромом и железом непрерывный ряд твердых растворов при концентрациях начиная с 12,5% и выше, способствует формированию в хромистых нержавеющих сталях различной структуры, обеспечивающей многообразие их свойств.

Углерод в составе хромистых нержавеющих сталей.

Кроме хрома на формирование физико-механических свойств хромистых сталей, значительное влияние оказывает содержание углерода. Структуру нержавеющей стали в зависимости от содержания углерода разделяют на три главных класса: мартенситная, мартенситно-ферритная и ферритная. Это нашло отражение в классификации нержавеющих сталей по ранее действующему ГОСТ 5632-72 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные».

Углерод содержащийся в составе нержавеющей стали, в том числе и в хромистой, это нежелательный элемент. Углерод слишком активный компонент, связывая хром в карбиды, он обедняет твердый раствор, тем самым понижая коррозионную стойкость нержавеющей стали. Кроме того повышенное содержание углерода требует повышения температуры закалки до 975-1050оС, для более полного растворения карбидов хрома.

В качестве примера серьезного влияния углерода на структуру и свойства нержавеющей стали рассмотрим сталь с содержанием 18% Cr. Например сталь 95Х18 в составе которой содержится 0,9-1,0%С и имеющая структуру мартенсита, обладает высокой твердостью (>55HRC), но коррозионная стойкость ее умеренная. А нержавеющие стали 12Х17, 08Х17Т, 08Х18Т1, со структурой феррита, имеют наоборот, низкую твердость и высокие коррозионные свойства.

Ферритные нержавеющие стали.

Нержавеющие стали с содержанием Cr более 12,5% и с минимальным количеством углерода имеют структуру феррита и называются ферритными. Коррозионная стойкость хромистых ферритных нержавеющих сталей во многих агрессивных средах может превосходить многие хромоникелевые аустенитные нержавеющие стали, при этом они не склонны к коррозионному растрескиванию под напряжением. При дополнительном легировании кремнием и алюминием хромистые ферритные нержавеющие стали могут быть использованы при производстве оборудования, работающего в окислительных условиях при высоких температурах.

Нержавеющие хромистые (ферритные и мартенситные) стали.

Недостатком, сдерживающим более широкое применение хромистых ферритных нержавеющих сталей сдерживается из-за чрезмерной хрупкости их сварных соединений. Высокая чувствительность к надрезу при нормальной температуре делает их так же непригодными для изготовления оборудования, работающего под давлением, при ударных и знакопеременных нагрузках. Ферритные нержавеющие стали используют для изготовления ненагруженных устройств и изделий.

Для обеспечения свариваемости хромистых ферритных нержавеющих сталей необходимо ограничением в иx составе не только углерода, но и азота. Нержавеющие ферритные стали, с суммарным содержанием углерода и азота не более 0,020% обладают большей пластичностью и повышенной ударной вязкостью, а значит меньшей хрупкостью при сварке. Но технология производства таких сталей усложнена, так как необходимо использование вакуумных печей или продувка расплава аргоном или аргоно-кислородной смесью.

Читайте так же:
Бензопилы штиль обзор моделей

Нержавеющие стали ферритного класса при нагреве не изменяют состав структуры, твердый раствор лишь становится более однородным. Поэтому для увеличения коррозионной стойкости можно использовать термическую обработку.

Мартенситные нержавеющие стали

Хромистые нержавеющие стали, в составе которых содержится повышенное количество углерода имеют структуру мартенсита. Для обеспечения заданных коррозионных и других свойств, мартенситные стали дополнительно легируются никелем и другими химическими элементами. Никель взаимодействуя с углеродом стабилизирует структуру нержавеющей стали, а молибден, вольфрам, ванадий, ниобий вводят для повышения жаропрочности сталей.

Прочность обычных мартенситных хромистых нержавеющих сталей остается удовлетворительной прочностью при температурах до 500оС, то дополнительное легирование элементами, образующими соединения с углеродом поднимают этот порог до 650оС. Это позволяет использовать легированные мартенситные хромистые нержавеющие стали для изготовления элементов современного энергетического оборудования. Молибден и вольфрам, кроме того, снижают хрупкость при длительной эксплуатации при высоких температурах.

Стали мартенситного класса, такие как 20Х13, 30Х13, 40Х13, 65Х13 и др., обладают повышенной твердостью и используются для изготовления режущего инструмента, и элементов оборудования работающих на износ. Термическая обработка сталей этой группы заключается в закалке и отпуске на заданную твердость.

Мартенситные нержавеющие стали так же склонны к хрупкому разрушению в закаленном состоянии, что усложняет технологию их сварки. Содержание углерода в мартенситных сталях, как правило, превышает 0,10%, и это приводит к образование холодных трещин в процессе охлаждения мартенсита, после нагрева электросваркой. При снижении содержания углерода дополнительным легированием вязкость мартенсита повышается, однако при этом возникает другая опасность, а именно образование структурно-свободного феррита, который, так же является причиной высокой хрупкости стали.

Для предотвращения образования холодных трещин мартенситные нержавеющие стали сваривают при температуре воздуха ≥0оС и применяют предварительный и сопутствующий подогрев до 200 . 450оС. Температура подогрева назначается в зависимости от склонности стали к закалке.

Мартенситно-ферритные нержавеющие стали.

К этому классу относят стали с частичным γ→α превращением. Термокинетическая диаграмма у этих сталей состоит из двух областей превращения. При температурах >600оС при низкой скорости охлаждения возможно образование ферритной составляющей структуры. При большой скорости охлаждения <400oС наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита зависит от содержания углерода и скорости охлаждения.

Нержавеющие хромистые (ферритные и мартенситные) стали.

Коррозионная стойкость нержавеющих сталей мартенситно-ферритного класса зависит от содержания в них хрома. При содержании 17%Cr достигается стойкость в 65%-ной азотной кислоте при 50оС, при дальнейшем повышении концентрации хрома расширяется область применения хромистых нержавеющих сталей в различных средах. Мартенситно-ферритные стали находят довольно широкое применение для изготовления нефтехимической аппаратуры и энергетического оборудования.

По свариваемости мартенситно-ферритные нержавеющие стали так же являются неудобными материалами. В связи с неизбежной подкалкой при сварке сварные соединения мартенситно-ферритных сталей склонны к образованию трещин замедленного разрушения.

Другие особенности хромистых нержавеющих сталей.

Коррозионная стойкость хромистых нержавеющих сталей напрямую зависит от содержания хрома, чем выше, тем лучше. В настоящее время хромистые нержавеющие стали по доле содержания хрома подразделяют на три типа: содержащие 13%Сr; содержащие 17%Сr, и нержавеющие стали содержащие 25—28% Сr.

Стали 08X13 и 12X13 обладающие повышенной пластичностью, используются для изготовления деталей, подвергающихся ударным нагрузкам, таки как турбинные лопатки, арматура для крекинг-установок, предметы домашнего обихода.

Из нержавеющих сталей 30X13 и 40X13, со структурой мартенсита после термической обработки изготавливают измерительный и медицинский инструменты, пружины и другие коррозионностойкне детали, от которых требуется высокая твердость или прочность.

При концентрации хрома выше 20% и дополнительном легировании молибденом хромистые нержавеющие стали приобретают стойкость против питтинговой коррозии. По стойкости против коррозиионного растрескивания хромистые нержавеющие стали ферритного класса превосходят аустенитные хромоникелевые стали типа 08Х18Н10Т.

Введение карбидообразующих элементов, например титана, значительно повышает стойкость сварных соединений из хромистой нержавеющей стали против межкристаллитной коррозии. Это так же позволяет снизить склонность структуры стали к росту зерна (сталь 08Х18Т1). Дополнительное замедление роста зерна ферритных нержавеющих сталей происходит также при микролегировании поверхностно-активным элементами, такими как церий. Микролегирование церием использовано, в частности, в стали 08Х18Тч (ДИ-77). Положительный эффект от введения редкоземельных элементов достигается только в определенных количественных пределах и при соблюдении технологического процесса.

Читайте так же:
Автоматы для газовых котлов

Нержавеющие хромистые (ферритные и мартенситные) стали.

Как уже говорилось на снижение хладноломкости ферритных нержавеющих сталей значительное влияние оказывают примеси внедрения — углерод и азот. При суммарном содержании углерода и азота ≤ 0,01% работоспособность сварных соединений из высокохромистых ферритных нержавеющих сталей при отрицательных температурах значительно возрастает. Чувствительность ферритных нержавеющих сталей к хладноломкости повышает и наличие в сплаве фосфора, кислорода, серы, марганеца, кремния и это накладывает повышенные требования к технологии выплавки.

При снижении суммарного содержания углерода и азота до 0,010-0,015%, повышается стойкость нержавеющей стали против межкристаллитной коррозии. При превышении содержания этих компонентов требуется введение в состав нержавеющей стали дополнительных стабилизаторов — титана и ниобия.

Высокохромистые нержавеющие стали становятся склонными к охрупчиванию при неправильной термической обработке. Развивается так называемая «475оС-хрупкость» нержавеющей стали, которая правда носит обратимый характер и устраняется новой термической обработкой.

Качество поверхности горячекатаного и холоднокатаного листа из хромистых ферритных титаносодержащих нержавеющих сталей повышается при легировании кремнием (сталь 04Х15СТ. Легирование кремнием повышает сопротивление точечной коррозии за счет обогащения кремнием верхних слоев защитной пленки.

Особую группу ферритных нержавеющих сталей составляют так называемые «суперферриты», в которых более жестко ограничен состав элементов-примесей (01Х18М2Т-ВИ, 01Х25М2Т-ВИ, 01Х25ТБЮ-ВИ). Эти нержавеющие стали обладают повышенным уровнем пластичности и вязкости сварных соединений и устойчивы против питтинговой коррозии и коррозионного растрескивания в большинстве агрессивных сред.

Из нержавеющей стали 12X17 изготавливают теплообменники, трубопроводы и баки для кислот. Введение молибдена (12Х17М2Т) делает нержавеющую сталь стойкой даже в органических кислотах (уксусной, муравьиной). Для изготовления шарикоподшипников, работающих в агрессивных средах, используют сталь 95X18 (0,9—1,0% С, 17—19% Сr).

Из чего состоит нержавейка

Медицина />Зуботехническое материаловедение />

Основу всех сталей составляет железо, они также содержат хром, никель и небольшое количество углерода. Для улучшения литейных, прочностных и других свойств сталей к ним делают добавки. Сталь для зубных протезов содержит 1% титана.

Железо — металл, широко распространенный в природе. Железные руды содержат химические соединения его с кислородом. Важнейшими железными рудами являются магнитный железняк (магнетит) FeaO4, красный железняк (гематит) Fе2O3, бурый железняк Fe2O3-SH2O, шпатовый железняк (сидерит), содержащий железо в карбонате РеСОз. Железо получают также из руд, содержащих хром (хромиты), хромоникелевых руд, титаномагнетитових и др.
Чистое железо имеет синевато-серебристый цвет, в химическом отношении не устойчиво. Во влажной среде оно подвергается коррозии. Растворы солей и кислот растворяют железо.
Железо очень пластичный металл, однако получить его в чистом виде и защитить от коррозии очень трудно.
Широкое применение нашли различные сплавы на основе железа, из которых наиболее распространенными являются различные стали. В зубопротезной практике нашли применение малоуглеродистые стали с; содержанием углерода до 0,15%. Большее количество углерода делает сталь более твердой и менее устойчивой к коррозии.
Рецепт стали для изготовления зубных протезов в нашей стране в 30-х годах был предложен Д. Н. Цитри-ным. Применение ее значительно уменьшило использование золота и платины, что было очень важно для развития стоматологической помощи населению страны в широких масштабах.

Нержавеющая сталь, применяемая в ортопедической стоматологии — многокомпонентный сплав. В него входят железо, хром, никель, углерод, титан и ряд других добавок. Главным компонентом, обеспечивающим коррозионную устойчивость сплава, является хром. Его содержится в сплаве 17—19%. Минимальное содержание хрома, обеспечивающее коррозионную стойкость сплава, должно быть не меньше 12—13%.
Для повышения пластичности сплава в него добавляют 8—11% никеля. Присутствие никеля делает сплав ковким, что облегчает обработку давлением. В промышленности виды стали принято обозначать марками. Компоненты, входящие в состав сплава, обозначают буквами: кремний —С, хром—X, никель—Н, титан —T и т. д. Цифрами обозначают процент содержания компонента в сплаве. Первая цифра марки обозначает содержание углерода в десятых долях процента.
Наиболее распространенной в зубопротезной практике-является нержавеющая сталь марки 1Х18Н9Т. Этот сплав состоит из 72% железа, 18% хрома, 9% никеля, 0,1% углерода и до 1% титана. В небольшом количестве всегда присутствуют посторонние примеси, среди которых наиболее . нежелательными являются сера и фосфор. Железо с углеродом в сплавах может находиться в различных сочетаниях: в виде химического соединения — карбида железа Fe3C или в виде твердого расплава, когда атомы углерода располагаются в кристаллической решетке между атомами железа. Углерод в сплаве может находиться в свободном состоянии в виде графита. Различные виды связи железа с углеродом наблюдаются при термической обработке стали, ее кристаллизации из расплава.

Читайте так же:
Аккумулятор с обратной полярностью что это

Встречаются следующие структурные виды связи железа и углерода:

1. Аустенит — твердый раствор углерода в железе, характеризующийся пластичностью, ковкостью сплава при твердости около 200 кгс/см2 по Бринеллю.

2. Феррит — твердый раствор углерода, очень мягкий и пластичный. Его твердость около 80 кгс/мм2 по Бринеллю.

3. Цементит — карбид железа (Fe3C), очень твердый и хрупкий.

4. Перлит — смесь кристаллов цементита и феррита. Получается из аустенита в результате его распада при температуре 723°С.

5. Ледебурит — смесь перлита и цементита, очень , твердый и хрупкий.

Аустенитная структура нержавеющей стали отвечает всем основным требованиям, предъявляемым к зубопротезным материалам, поэтому при термической и механической обработке стали ее стараются в конечном итоге фиксировать в аустенитной структуре.Хром с углеродом также может давать ряд химических соединений — карбидов хрома: Cr4C, Cr3C2, O5C2. Они образуются при термической обработке сплава в температурном интервале 450—850°С.
Карбиды образуются по границам кристаллических зерен, что ттриводит к уменьшению количества гнободного хрома в этих зонах, и в связи с этим увеличивается возможность возникновения межкристалмической коррозии.
Чтобы уменьшить возможность образования карбидов хрома, в состав нержавеющей стали вводят титан, активнее вступающий в связь с углеродом и образующий карбиды титана. При этом образование корбидов хрома прекращается, и таким образом типі н предотвращает межкристаллическую коррозию стали. Для улучшения жидкотекучести и жаростойкости стали, используемой для литья, в нее вводят 2,5% кремния (сплав ЭИ-95).
Нержавеющая сталь нашла широкое применение при изготовлении зубных протезов. Из нее делают различные виды несъемных зубных протезов, металлические части съемных протезов (кламмеры, дуги и т. п.). Нержавеющая сталь аустенитной структуры благодаря пластичности и ковкости хорошо обрабатывается методом давления.

Для изготовления штампованных коронок промышленность выпускает стандартные гильзы. Их получают из листа стали марки 1Х18Н9Т толщиной 0,25—0,3 мм методом холодной штамповки. Следует иметь в виду, что стандартные гильзы из нержавеющей стали имеют разную толщину. Наиболее истонченной частью оказывается область перехода боковых стенок ко дну. Вследствие возникающего при штамповке наклепа структура стали в гильзах оказывается деформированной. Показателем этого является повышенная твердость боковых частей гильзы. Если микротвердость (по Виккерсу) в середине дна составляет 130—150 кгс/мм2, то у боковых стенок она достигает 290 кгс/мм2. Для придания гильзам хорошей ковкости в зуботехнических лабораториях их подвергают отжигу при температуре 1000—1050°С. В настоящее время Ленинградский завод «Медполимер» выпускает 22 размера гильз диаметром 6—16 мм через каждые 0,5 и 18 мм.Из этой же стали выпускают проволоку диаметром 0,6; 0,8; 1,0; 1,2; 1,5 и 2,0 мм для изготовления различных ортодонтических аппаратов, кламмеров, штифтов. Кроме этого, выпускают 2 вида стандартных кламмеров диаметром 1,0 и 1,2 мм.
Сталь марок ЭИ-95 и ЭЯ1Т имеет хорошие литейные свойства и применяется для отливки различных деталей зубных протезов. Недостатком ее является относительно большая усадка приглитье (доЗ%), низкий предел прочности (около 30 кгс/мм2), показывающий величину нагрузки, необходимую, чтобы вызвать остаточную деформацию материала.
Эту сталь используют и для промышленного изготовления стандартных защиток для фасеток и зубов, которые комплектуют гарнитурами (передние и боковые зубы). Стандартные зубы применяют крайне редко, главным образом в районах, где нет условий для организации индивидуального литья.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector