Tehnik-ast.ru

Электро Техник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками

Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками

Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный. Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В. Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.

Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.

ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!

  • рулетка
  • отвертка
  • Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
  • Проволочные защелки
  • Паяльник
  • Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)
  • переключатель
  • 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
  • Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
  • Термоусадка
  • Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).

В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):

  • Клеммные колодки
  • Дрель
  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм
  • Разъемы
  • Зажимы «крокодил»

Шаг 1: Сбор и подготовка блока питания

Предупреждение: ПЕРЕД ТЕМ, КАК НАЧАТЬ, УБЕДИТЕСЬ, ЧТО БЛОК ПИТАНИЯ НЕ ПОДКЛЮЧЕН

Конденсаторы могут ударить током, что довольно больно. Дайте блоку питания полежать в течение нескольких дней, чтобы он разрядился, или подключите резистор на 10 Ом к красному и черному проводу.

Если вы слышите жужжание при включении питания, это означает, что где-то происходит короткое замыкание или другая серьезная проблема. Если вы слышите жужжание (не от паяльника) во время пайки, это означает, что блок питания подключен. Помните, что если блок, который подключен к питанию, отключить кнопкой, в нем все еще останется ток.

Хорошо, давайте вынем блок питания из компьютера. Обычно он крепится на 4 винтах к задней панели корпуса. Выньте провода из отверстия, затем сгруппируйте их по цветам и отрежьте концы.

Кстати, вы только что аннулировали свою гарантию.

Шаг 2: Делаем проводку

Теперь приступим к сложной части, где нужно добавить светодиоды, переключатели и другие подобные детали. Мы имеем много проводов каждого типа, поэтому я рекомендую использовать 2-4 провода. Некоторые люди перебирают все внутри коробки, а я сделал всё снаружи. Это зависит от того, какой метод вы используете на следующем шаге.

Если вы хотите добавить индикатор ожидания или индикатор включения питания, вам понадобится светодиод (рекомендую красный, но не обязательно) и резистор на 330 Ом. Припаяйте черный провод к одному концу резистора, а короткий конец светодиода — к другому. Резистор уменьшит напряжение, чтобы не повредить светодиод. Перед пайкой, наденьте небольшой кусок термоусадки, чтобы защитить контакты от короткого замыкания. Припаяйте фиолетовый провод к более длинной ноге, и когда вы подадите питание (не включая блок), светодиод должен загореться.

Для включенного блока питания вы также можете установить другой светодиод (рекомендую зеленый). Некоторые говорят, что нужно использовать серый провод для питания светодиода, но тогда нужен еще один резистор на 330 Ом. Я просто подключил его к оранжевому проводу 3,3 В.

Если вы используете метод с серым проводом:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте серый провод к одному концу резистора, а другой конец резистора — к более длинной ножке светодиода. Черный провод припаяйте к короткой ножке.

При использовании оранжевого провода 3.3В:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте оранжевый провод к более длинной ножке светодиода, а черный провод — к более короткой ножке.

Читайте так же:
Какая бензопила лучше штиль или макита

Теперь к переключателю: если на задней стенке вашего блока питания уже есть переключатель, этот пункт вам не сильно пригодится. Подключите зеленый провод к одному контакту на переключателе, а черный — к другому. Если вы не хотите использовать переключатель, просто соедините зеленый и черный провода.

Вы также можете использовать предохранитель на 1А. Всё, что нужно сделать, это обрезать черные провода примерно в середине, и соединить их с предохранителем в держателе.

Некоторым блокам питания нужна нагрузка для правильной работы. Для обеспечения этой нагрузки припаяйте красный провод к одному концу резистора 10 Ом10 Вт и черный провод к другому. Таким образом блок будет думать, что он что-то делает.

Если вы ничего не поняли, загляните в схему, которую я приложил. В ней показан способ подключения проводов. Об этом я расскажу в следующем шаге. Там изображен способ с серым проводом на светодиод (но вы можете использовать оранжевый, как написано выше), а также показывает проводку для высокоомного резистора.

Шаг 3: Пускаем ток!

В учебных пособиях, которые я прочитал, существует множество различных способов подключения разъемов для подключения ваших устройств к питанию. Мы начнем с самого лучшего и дойдем до худшего.

Некоторые учебные пособия расскажут вам, как собрать все детали внутри корпуса, но это опасно и приведет к чрезмерному нагреву и поломкам. Я рекомендую использовать внешний монтаж.

Добавление переменного резистора

Я лично считаю, что это лучший метод, так как он может обеспечить любое напряжение от 1,5 до 24 В. Причина того, что он на 22В, а не 12В, потому что он использует синий провод, который имеет напряжение -12 В, а не обычную землю (черный провод).

  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм

Сначала постройте схему с основного изображения и соедините ваши линии +12 и -12 В. Затем просверлите отверстия в блоке питания или в внешнем корпусе, чтобы установить переменный резистор. Все остальные детали должны находиться внутри. Теперь я предлагаю добавить две клеммных колодки, чтобы вы могли подключать устройства напрямую. Также можно подключить к ним «крокодилы». Когда вы поворачиваете переменный резистор, напряжение должно находиться в диапазоне от 1,5 до 24 В.

ПРИМЕЧАНИЕ. На главном изображении есть опечатка, которую следует учесть: + 24В вместо 22В. Если у вас есть старый вольтметр, вы можете подключить его в цепь, чтобы отслеживать выходящее напряжение.

Разъемы

Теперь нужно установить разъемы для подключения оборудования. Просверлите для них отверстия (обязательно оберните печатную плату в пластик, так как металлические осколки могут закоротить ее), а затем проверьте, подходят ли они по размеру, вставив разъемы и затянув болт. Выберите, какое напряжение должно идти на каждый разъем и сколько разъемов нужно вставить. Обозначения проводов по цветам:

  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3В
  • Черный: Земля
  • Белый: -5В

Выше приведено изображение с использованием метода с разъемами.

Крокодиловые зажимы

Если у вас не так много опыта или у вас нет вышеуказанных деталей, и по какой-то причине вы не можете их купить, вы можете просто подключить любые линии напряжения, которые вы хотите к крокодиловым зажимам. Если вы выбрали этот вариант, я рекомендую использовать изоляцию, чтобы предотвратить КЗ.

Советы и устранение неполадок

  1. Не бойтесь добавлять ингредиенты в коробку: светодиоды, наклейки и т.д.
  2. Убедитесь, что вы используете блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у вас нет данных о проводке, даже не начинайте никаких работ, иначе вы просто сломаете свой блок.
  3. Если светодиод на передней панели не горит, значит ножки подключены неправильно. Просто поменяйте провода местами и он должен загореться.
  4. Некоторые современные блоки питания имеют провод «Сигнал обратной связи стабилизатора», который должен быть подключен к источнику питания для работы блока. Если провод серый, подключите его к оранжевому проводу, если он розовый, подключите его к красному проводу.
  5. Силовой резистор с высокой мощностью может довольно сильно нагреваться; вы можете использовать радиатор, чтобы охладить его, но убедитесь, что он не создает КЗ.
  6. Если вы решили монтировать детали внутрь корпуса, вентилятор можно установить снаружи, чтобы освободить немного места.
  7. Вентилятор может шумно работать, ведь он питается от 12В. Так как это не компьютер, который сильно нагревается, можно обрезать красный провод вентилятора и подключить оранжевый 3,3 В. Следите за температурой после этого. Если она слишком большая, подключите обратно красный провод.
Читайте так же:
Как сварить чугун электродом

Поздравляю! Вы успешно сделали ваш блок питания.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Зарядное из компьютерного блока питания

Здравствуйте. Товарищ подогнал мне плату со старого AT блока питания, так что сегодня речь пойдет о переделке компьютерного блока питания в зарядное устройство. Моя задача настроить выход на напряжение 14,4В и сделать регулятор тока до 6А. Такой зарядное устройство отлично подойдет для автомобильных стартерных аккумуляторов до 80A ч.
Плата долгое время пылилась на полках в гараже, поэтому пыль легла хорошим слоем. Часть деталей отсутствует, плата сломана пополам
Плата компьютерного блока питания AT
В первый раз вижу такую удобную плату для переделки в зарядное. Лишних деталей не так много, ШИМ стоит, который является полным аналогом TL494, так что много время переделка не займет.
Плата компьютерного блока питания AT
Подался в интернет в поисках подходящей схемы. Схем похожих валом, но самая подходящая вот она.

Схема компьютерного блока питания AT

Схема отличная, но надо вырезать все лишнее. Убрал цепи шин 5В,3В,-5-12В, оставил только 12В, цепь PG тоже убрал.

Схема блока питания без лишних цепей для 5В

После переделок схема выглядит примерно так.

А блок питания постепенно менялся, ремонтировался и модернизировался. Ну первым делом очистил плату от загрязнений, снял лишние детали и на шину 12В подал 15В от лабораторного блока питания. На развязывающем трансформаторе есть прямоугольные импульсы, значит генератор работает исправно.
Импульсы на развязывающем трансформаторе
Проверил что происходит на силовых транзисторах. Осциллограф слабый и криминального ничего не показал. Кто не знает, что за осциллограф, почитайте о нем статью Осциллограф DSO138.
Импульсы на силовых транзисторах
Ну и проверю сами силовые ключи с помощью мультиметра.
Проверка силового транзистора
Проверка силового транзистора
Плата была немного сломана и пришлось небольшие перемычки кинуть. Далее смотал старый дроссель и заново проложил обмотку на 5 витков больше, чем была обмотка 12В. Припаял пока одну емкость 25В 2200мкФ и заменил номинал резистора по схеме R30 . Резистор подбирал следующим образом, подключил 14,4В на шину 12В, замерил напряжение на второй ноге 2,56В TL494, вместо R30 поставил переменный 20 кОм и вращая добился 2,56В на первой ноге ШИМ, затем переменный резистор заменил на постоянный.
Плата готова к пуску на 14,4ВПоставил радиатор на место и конденсаторы нашел в коробке 470мкФ 200В в первичных цепях, так же проверил диодный мост, предохранитель и резистор заменил на 1Ом 10Вт. Блок готов к безопасному пуску через лампу и надеюсь увидеть 14,4В на выходе.
Плата готова к пуску на 14,4В
Питание уже есть, лампа вспыхнула и погасла, спираль не подсвечивает и на выходе есть искомые 14,4В.
14,4В на выходе блока питания
Микросхема питается от 24В, так и должно быть.
Питание микросхемы от 24ВПопробую нагрузить на нихромовую спираль 1,5Ом. Ток на старте был 10А, но упал до 9,4А.
Нагружаю блок на 10А
При такой нагрузке на самой плате 14,4В, на клемах на вольт меньше за счет просадки в кабеле. Общая мощность где то 150Вт. Можно грузить еще, но обмотка рассчитана примерно на 5А, поэтому от блока буду брать только 6А Напряжение 14,4В на платеКстати во время испытаний пару раз клемы выхода соединялись и блок уходил в защиту. Схема перезапускается после прерывания питания от сети 220В, это защита на двух транзисторах от сверх допустимой мощности .
Теперь нужно сделать регулятор тока от 0 до 6А. Нужно изменить схему, добавит 5 деталек, на столе под нагрузкой 6А все выглядит так.
Нагрузка 6А при 14,4В
Полностью готовая плата. В корпус устанавливать не буду, положу на полку до лучшего времени
Добавил регулятор токаНу и добавлю полностью готовую схему после всех переделок.
Полностью готовая схема15 ногу отрезал от ИОН 5В и на проводке припаял напряжение с делителя. В качестве шунта использовал резистор 25Вт 0,05Ом. Место шунта на схеме не очень удачно выбрано, так как учитываться будет ток потребления самой платы. Что бы зарядка не уходила в защиту при крайнем нижнем положении переменного резистора, между резистором и общим минусом впаял резистор 150 Ом. Делителем, который питается от средней ножки переменного резистора, выставляется максимальный ток. То есть, если на шунте 0,05Ом при 6А падает 0,3В, то на делителе с 5 вольт должно получиться 0,3В

Читайте так же:
Как сделать ручную таль

На этом переделка закончена, спасибо за внимание. Хотя нужно бы добавить сюда защиту от переполюсовки, но это другая история.

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Полностью автоматическое зарядное устройство 6-12В 6А для мото и авто АКБ

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Универсальное зарядное устройство 12-24В 10А

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.

—>Автозапчасти и СТО —>

Для переделки нам понадобится блок питания ATX, желательно 300 Вт.

БП от ПК выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. И так, рассказываем о типовых изменениях:

ЗУ из БП АТХ от ПК

Алгоритм переделки следующий:
1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.
3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.

KA7500

Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.
6. Далее собираем схему доработки.

Читайте так же:
Инструмент для брошюровки дерева

Схема переделки TL494, KA7500 для зарядного устройства

Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будите ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.
7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт, 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.
8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.
9. Припаиваем клеммы и идем тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.

Из блока питания для компьютера

Так как в тренде сейчас максимальное удешевление при производстве – то некачественный товар быстро доходит до дверей ремонтника. При покупки компьютера (особенно первого) – многие выбирают корпус «самый красивый из дешёвых» со встроенным БП – а многие даже не знают, что там есть такое устройство. Этот «скрытый девайс» на котором очень хорошо экономят продавцы. Но платить за проблемы будет покупатель.

О главном

Сегодня мы затронем тему ремонта компьютерных блоков питания, а точнее их первичной диагностики.Если есть проблемный или подозрительный БП – то диагностику желательно проводить отдельно от компьютера (на всякий случай). И поможет нам в этом вот такой агрегат:

2646702677.jpg

Блок состоит из нагрузок на линиях +3.3, +5, +12, +5vSB (дежурное питание). Он нужен для имитирования компьютерной нагрузки и измерения выходных напряжений. Так как без нагрузки БП может показать нормальные результаты – а в нагрузке могут проявляться многие проблемы.

Подготовительная теория

Грузить будем чем попало (что найдете в хозяйстве) – мощные резисторы и лампы.

3970302203.jpg

У меня валялись 2 автомобильные лампы 12V 55W/50W – две спирали (дальний/ближний свет). Одна спираль испорчена – будем использовать вторую. Покупать их не нужно – спросите у знакомых автомобилистов.

Конечно лампы накаливания имеют очень низкое сопротивление в холодном состоянии – и при запуске будут создавать большую нагрузку на короткое время – а это могут не выдержать дешевые китайцы – и не стартовать. Но плюс ламп — это доступность. Если достану мощные резисторы – поставлю вместо ламп.

Резисторы можно искать в старых приборах (ламповые телевизоры, радиолы) с сопротивлением(1-15 Ом).

Можно также использовать нихромовую спираль. Мультиметром подбираем длину с нужным сопротивлением.

Загружать будем не по полной а то 450W в воздух получится обогреватель. А ватт на 150 будет нормально. Если практика покажет что нужно больше – добавим. Кстати это примерное потребление офисного ПК. А лишние ваты рассчитаны по линиям +3.3 и +5 вольт – которые мало используются – примерно по 5 ампер. А на этикетке жирно написано по 30А –а это 200ватт которые ПК не может использовать. А по линии +12 часто не хватает.

Для нагрузки у меня в наличии:

  • 3шт резисторы 8.2ом 7,5w
  • 3шт резисторы 5.1ом 7,5w
  • резистор 8.2ом 5w
  • лампы 12в: 55w, 55w, 45w, 21w

Для расчётов будем использовать формулы в очень удобном виде (у меня висит на стене – всем рекомендую)

Читайте так же:
Как измерить сопротивление резистора мультиметром

2527101180.jpg

Итак выбираем нагрузку:

— линия +3.3В – используется в основном для питания оперативной памяти – примерно 5ватт на планку. Будем грузить на ~10ватт. Вычисляем нужное сопротивление резистора

R=V 2 /P=3.3 2 /10=1.1 Ом таких у нас нет, минимальный 5.1ом. Вычисляем сколько он будет потреблять P=V 2 /R=3.3 2 /5.1=2.1W–мало, можно поставить 3 параллельно – но получим всего 6W на троих–не самое удачное использование таких мощных резисторов (на 25%) – да и место займут большое. Я пока не ставлю ничего – буду искать на 1-2 Ома.

— линия +5В–мало используется в наши дни. Смотрел тесты – в среднем кушает 5А.

Будем грузить на ~20ватт. R=V 2 /P=5 2 /20=1.25 Ом — тоже малое сопротивление, НО у нас уже 5 вольт – да еще и в квадрате – получим намного большую нагрузку на те же 5-ти омные резисторы. P=V 2 /R=5 2 /5.1=4.9W – поставим 3 и будет у нас15W. Можно добавить 2-3 на 8ом (будут потреблять по 3W), а можно и так оставить.

— линия +12В – самая востребованная. Тут и процессор, и видеокарта, и некоторые малоежки (кулеры, накопители, ДВД).

Будем грузить на целых 155ватт. Но раздельно: 55 на разъём питания материнской платы, и 55 (+45 через переключатель) на разъём питания процессора.Будем использовать автомобильные лампы.

— линия +5VSB – дежурное питание.

Будем грузить на ~5ватт. Есть резистор 8.2ом 5w, пробуем его.

Вычисляем мощностьP=V 2 /R=5 2 /8.2=3Wну и хватит.

— линия -12В – тут подключим вентилятор.

Фишки

Еще в корпус добавим малогабаритную лампу 220В 60W в разрыв сети 220В. При ремонте часто используется для выявления КЗ (после замены каких-то деталей).

Собираем девайс

По иронии судьбы – корпус будем использовать тоже от компьютерного БП (нерабочего).

Гнёзда для разъёма питания материнки и процессора выпаиваем с неисправной материнки. К ним припаиваем кабеля. Цвета желательно выбрать как на разъёмы от БП.

1261420229.jpg

Готовим резисторы, лампы, лед-индикаторы, переключатели и разъём для измерений.

Подключаем все по схеме .. точнее по VIP-схеме 🙂

81015588.jpg

Крутим, сверлим, паяем – и готово:

2646702677.jpg

По виду должно быть все понятно.

Бонус

Изначально не планировал, но для удобства решил добавить и вольтметр. Это сделает прибор более автономным – хотя при ремонте мультиметр все равно где-то рядом лежит. Смотрел на дешевые 2-ух проводные (которые питаются от измеряемого напряжения) – 3-30 В – как раз нужный диапазон. Просто подключив к разъёму для измерений. Но у меня был 4,5-30 В и я решил поставитьуже 3-х проводной0-100 В – и питать его от зарядки мобильного телефона (тоже в корпус добавил). Так он будет независим и покажет напряжения от нуля.

Этот вольтметр также можно использовать для измерения внешних источников (батарейку или еще чего . )– подключив к измерительному разъёму (если мультиметр где-то пропал).

Фейс-контроль

3843734701.jpg

Пару слов о переключателях.

S1– выбираем способ подключения: через лампу 220В (Выкл) или напрямую (Вкл). При первом запуске и после каждой пайки – проверяем через лампу.

S2 – подается питание 220В на БП. Должно заработать дежурное питание и загореться LED +5VSB.

S3 – замыкается PS-ON на землю, должен запустится БП.

S4 – добавка 50W на линии процессора. (50 там уже есть, будет 100W нагрузки)

SW1 – Переключателем выбираем линию питания и проверяем по очереди если все напряжения в норме.

Так как измерения у нас показывает встроенный вольтметр,то в разъёмы можно подключить осциллограф для более глубокого анализа.

Кстати

Пару месяцев назад купил около 25 БП (у закрывающиеся конторы по ремонту ПК). Половина рабочие, 250-450 ватт. Покупал как подопытных кроликов для изучения и попытки ремонта. Блок нагрузки как раз для них.

Вот и всё. Надеюсь было интересно и полезно. Я пошел тестировать свои БП и вам желаю удачи !

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector