Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Транзистор IGBT-принцип работы, структура, основные характеристики

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Транзистор IGBT

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Транзистор IGBT

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Транзистор IGBT

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

Читайте так же:
Лучший ручной пылесос на аккумуляторе

Ф

Формула заряда затвора: ф1

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления затвором определяется по упрощенной формуле:

Ф

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Транзистор IGBT

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

IGBT-транзисторы — основные компоненты современной силовой электроники

IGBT-транзистор (сокращение от англоязычного Insulated-gate bipolar transistor) или биполярный транзистор с изолированным затвором (сокращенно БТИЗ) — представляет собой полупроводниковый прибор с тремя выводами, сочетающий внутри одного корпуса силовой биполярный транзистор и управляющий им полевой транзистор.

IGBT-транзисторы являются на сегодняшний день основными компонентами силовой электроники (мощные инверторы, импульсные блоки питания, частотные преобразователи и т.д.), где они выполняют функцию мощных электронных ключей, коммутирующих токи на частотах измеряемых десятками и сотнями килогерц. Транзисторы данного типа выпускаются как в виде отдельных компонентов, так и в виде специализированных силовых модулей (сборок) для управления трехфазными цепями.

Пример применения IGBT-транзисторов

То что IGBT-транзистор включает в себя транзисторы сразу двух типов (включенных по каскадной схеме), позволяет объединить достоинства двух технологий внутри одного полупроводникового прибора.

Биполярный транзистор в качестве силового позволяет получить большее рабочее напряжение, при этом сопротивление канала в открытом состоянии оказывается пропорционально току в первой степени, а не квадрату тока как у обычных полевых транзисторов. А то что в качестве управляющего транзистора используется именно полевой транзистор — сводит затраты мощности на управление ключом к минимуму.

Названия электродов характеризуют структуру IGBT-транзистора: управляющий электрод именуется затвором (как у полевого транзистора), а электроды силового канала — коллектором и эмиттером (как у транзистора биполярного).

Немного истории

Исторически биполярные транзисторы использовались наравне с тиристорами в качестве силовых электронных ключей до 90-х годов. Но недостатки биполярных транзисторов были всегда очевидны: большой ток базы, медленное запирание и от этого перегрев кристалла, сильная зависимость основных параметров от температуры, ограниченное напряжение насыщения коллектор-эмиттер.

Появившиеся позже полевые транзисторы (структуры МОП) сразу изменили ситуацию в лучшую сторону: управление напряжением уже не требует столь больших токов, параметры ключа слабо зависят от температуры, рабочее напряжение транзистора не ограничено снизу, низкое сопротивление силового канала в открытом состоянии расширяет диапазон рабочих токов, частота переключения легко может достигать сотен килогерц, кроме того примечательна способность полевых транзисторов выдерживать сильные динамические нагрузки при высоких рабочих напряжениях.

Поскольку управление полевым транзистором реализуется значительно проще и получается по мощности существенно легче чем биполярным, да к тому же внутри имеется ограничительный диод, — транзисторы с полевым управлением сразу завоевали популярность в схемах импульсных преобразователей напряжения, работающих на высоких частотах, а также в акустических усилителях класса D.

Владимир Дьяконов

Первый силовой полевой транзистор был разработан Виктором Бачуриным еще в Советском Союзе, в 1973 году, после чего он был исследован под руководством ученого Владимира Дьяконова. Исследования группы Дьяконова относительно ключевых свойств силового полевого транзистора привели к разработке в 1977 году составного транзисторного ключа, внутри которого биполярный транзистор управлялся посредством полевого с изолированным затвором.

Ученые показали эффективность такого подхода, когда токовые свойства силовой части определяются биполярным транзистором, а управляющие параметры — полевым. Причем насыщение биполярного транзистора исключается, а значит и задержка при выключении сокращается. Это — важное достоинство любого силового ключа.

На полупроводниковый прибор нового типа советскими учеными было получено авторское свидетельство №757051 «Побистор». Это была первая структура, содержащая в одном корпусе мощный биполярный транзистор, поверх которого находился управляющий полевой транзистор с изолированным затвором.

Биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistor, IGBT)

Что касается промышленного внедрения, то уже в 1983 году фирмой Intarnational Rectifier был запатентован первый IGBT-транзистор. А спустя два года был разработан IGBT-транзистор с плоской структурой и более высоким рабочим напряжением. Это сделали одновременно в лабораториях двух компаний — General Electric и RCA.

Первые версии биполярных транзисторов с изолированным затвором имели один серьезный недостаток — медленное переключение. Название IGBT было принято в 90-е, когда были созданы уже второе и третье поколение IGBT-транзисторов. Тогда уже этих недостатков не стало.

Отличительные преимущества IGBT-транзисторов

По сравнению с обычными полевыми транзисторами, IGBT-транзисторы обладают более высоким входным сопротивлением и более низким уровнем мощности, которая тратится на управление затвором.

В отличие от биполярных транзисторов — здесь более низкое остаточное напряжение во включенном состоянии. Потери в открытом состоянии, даже при больших рабочих напряжениях и токах, достаточно малы. При этом проводимость как у биполярного транзистора, а управляется ключ напряжением.

Диапазон рабочих напряжений коллектор-эмиттер у большинства широко доступных моделей варьируется от десятков вольт до 1200 и более вольт, при этом токи могут доходить до 1000 и более ампер. Есть сборки на сотни и тысячи вольт по напряжению и на токи в сотни ампер.

Считается, что для рабочих напряжений до 500 вольт лучше подходят полевые транзисторы, а для напряжений более 500 вольт и токов больше 10 ампер — IGBT-транзисторы, так как на более низких напряжениях крайне важно меньшее сопротивление канала в открытом состоянии.

Применение IGBT-транзисторов

Главное применение IGBT-транзисторы находят в инверторах, импульсных преобразователях напряжения и частотных преобразователях (пример — полумостовой модуль SKM 300GB063D, 400А, 600В) — там, где имеют место высокое напряжение и значительные мощности.

Сварочные инверторы — отдельная важная область применения IGBT-транзисторов: большой ток, мощность более 5 кВт и частоты до 50 кГц (IRG4PC50UD – классика жанра, 27А, 600В, до 40 кГц).

Сварочный инвертор

Не обойтись без IGBT и на городском электрcтранспорте: с тиристорами тяговые двигатели показывают более низкий КПД чем с IGBT, к тому же с IGBT достигается более плавный ход и хорошее сочетание с системами рекуперативного торможения даже на высоких скоростях.

Нет ничего лучше чем IGBT, когда требуется коммутировать на высоких напряжениях (более 1000 В) или управлять частотно-регулируемым приводом (частоты до 20 кГц).

Частотный преобразователь

На некоторых схемах IGBT и MOSFET транзисторы полностью взаимозаменяемы, так как их цоколевка схожа, а принципы управления идентичны. Затворы в том и в другом случае представляют собой емкость до единиц нанофарад, с перезарядкой у удержанием заряда на которой легко справляется драйвер, устанавливаемый на любой подобной схеме, и обеспечивающий адекватное управление.

Биполярный транзистор с изолированным затвором

Биполярный транзистор с изолированным затвором (БТИЗ, англ.  Insulated-gate bipolar transistor , IGBT) — трёхэлектродный силовой полупроводниковый прибор, сочетающий два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления) [1] . Используется, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами Перейти к разделу «#Применение» .

Каскадное включение транзисторов двух типов позволяет сочетать их достоинства в одном приборе: выходные характеристики биполярного (большое допустимое рабочее напряжение и сопротивление открытого канала, пропорциональное току, а не квадрату тока, как у полевых) и входные характеристики полевого (минимальные затраты на управление). Управляющий электрод называется затвором, как у полевого транзистора, два других электрода — эмиттером и коллектором, как у биполярного [2] [3] .

Выпускаются как отдельные IGBT, так и силовые сборки (модули) на их основе, например, для управления цепями трёхфазного тока.

Содержание

История [ править | править код ]

До 1990-х годов в качестве силовых полупроводниковых приборов, помимо тиристоров, использовались биполярные транзисторы. Их эффективность была ограничена несколькими недостатками:

  • необходимость большого тока базы для включения;
  • наличие токового «хвоста» при запирании, поскольку ток коллектора не спадает мгновенно после снятия тока управления — появляется сопротивление в цепи коллектора, и транзистор нагревается;
  • зависимость параметров от температуры;
  • напряжение насыщения цепи коллектор-эмиттер ограничивает минимальное рабочее напряжение.

С появлением полевых транзисторов, выполненных по технологии МОП (англ.  MOSFET ), ситуация изменилась. В отличие от биполярных, полевые транзисторы:

  • управляются не током, а напряжением;
  • их параметры не так сильно зависят от температуры;
  • их рабочее напряжение теоретически не имеет нижнего предела благодаря использованию многоячеистых СБИС;
  • имеют низкое сопротивление канала (менее миллиома);
  • могут работать в широком диапазоне токов (от миллиампер до сотен ампер);
  • имеют высокую частоту переключения (сотни килогерц и больше);
  • высокие рабочие напряжения при больших линейных и нагрузочных изменениях, тяжёлых рабочих циклах и низких выходных мощностях.

Полевые МОП-транзисторы легко управляются, что свойственно транзисторам с изолированным затвором, и имеют встроенный диод утечки для ограничения случайных бросков тока. Типичные применения этих транзисторов — импульсные преобразователи напряжения с высокими рабочими частотами, аудиоусилители (так называемого класса D).

Первые мощные полевые транзисторы были созданы в СССР в НИИ «Пульсар» (разработчик — В. В. Бачурин) в 1973 году, а их ключевые свойства исследованы в Смоленском филиале МЭИ (научный руководитель — В. П. Дьяконов) [4] . В рамках этих работ в 1977 году был предложен составной транзистор, в котором мощный биполярный транзистор управляется посредством полевого транзистора с изолированным затвором. Было показано, что выходные токи и напряжения составных структур определяются биполярным транзистором, а входные — полевым. При этом биполярный транзистор в ключе на основе составного транзистора не насыщается, что резко уменьшает задержку при выключении [5] и определяет достоинства таких приборов в роли силовых ключей [6] . На полупроводниковый прибор, названный «побистором», получено авторское свидетельство СССР № 757051. Он выполнен в виде единой структуры, содержащей мощный биполярный транзистор, на поверхности которого создан полевой транзистор с V-образным изолированным затвором [7]

Первый промышленный образец БТИЗ был запатентован International Rectifier в 1983 году. Позднее, в 1985 году, был разработан БТИЗ с полностью плоской структурой (без V-канала) и более высокими рабочими напряжениями. Это произошло почти одновременно в лабораториях фирм General Electric (Скенектади, штат Нью-Йорк) и RCA (Принстон, штат Нью-Джерси). Первоначально устройство называли COMFET, GEMFET или IGFET. [ источник не указан 1885 дней ] В 1990-е годы приняли название IGBT. Первые БТИЗ не получили распространения из-за врождённых пороков — медленного переключения и низкой надёжности. Второе (1990-е годы) и третье (современное) поколения IGBT в целом избавились от этих пороков.

Достоинства [ править | править код ]

БТИЗ сочетает достоинства двух основных видов транзисторов:

  • высокое входное сопротивление, низкий уровень управляющей мощности — от полевых транзисторов с изолированным затвором;
  • низкое значение остаточного напряжения во включённом состоянии — от биполярных транзисторов;
  • малые потери в открытом состоянии при больших токах и высоких напряжениях;
  • характеристики переключения и проводимость биполярного транзистора;
  • управление как у MOSFET — напряжением.

Диапазон использования — от десятков до 1200 ампер по току, от сотен вольт до 10 кВ по напряжению. В диапазоне токов до десятков ампер и напряжений до 500 В целесообразно применение обычных МОП- (МДП-) транзисторов, а не БТИЗ, так как при низких напряжениях полевые транзисторы обладают меньшим сопротивлением.

Применение [ править | править код ]

Основное применение БТИЗ — это инверторы, импульсные регуляторы тока, частотно-регулируемые приводы.

Широкое применение БТИЗ нашли в источниках сварочного тока, в управлении мощным электроприводом, в том числе на городском электрическом транспорте.

Применение IGBT-модулей в системах управления тяговыми двигателями позволяет (по сравнению с тиристорными устройствами) обеспечить высокий КПД, высокую плавность хода машины и возможность применения рекуперативного торможения практически на любой скорости.

БТИЗ применяют при работе с высокими напряжениями (более 1000 В ), высокой температурой (более 100 °C) и высокой выходной мощностью (более 5 кВт ). IGB-транзисторы используются в схемах управления двигателями (при рабочей частоте менее 20 кГц ), источниках бесперебойного питания (с постоянной нагрузкой и низкой частотой) и сварочных аппаратах (где требуется большой ток и низкая частота — до 50 кГц ).

IGBT и MOSFET занимают диапазон средних мощностей и частот, частично «перекрывая» друг друга. В общем случае, для высокочастотных низковольтных каскадов наиболее подходят МОП, а для высоковольтных мощных — БТИЗ.

В некоторых случаях БТИЗ и МОП-транзисторы полностью взаимозаменяемы, цоколёвка приборов и характеристики управляющих сигналов обоих устройств обычно одинаковы. IGBT и MOSFET требуют 12 — 15 В для полного включения и не нуждаются в отрицательном напряжении для выключения, как запираемый тиристор. Но «управляемый напряжением» не означает, что при переключении БТИЗ в цепи затвора отсутствует ток. Затвор БТИЗ (как и МОП-транзистора) для управляющей схемы является конденсатором с ёмкостью, достигающей единиц нанофарад (для мощных устройств), что определяет импульсный характер тока затвора. Драйвер затвора должен быть способным быстро заряжать и разряжать эту ёмкость, чтобы гарантировать быстрое переключение транзистора.

Проверка боем: применение IGBT от ST в составе инверторов сварочных аппаратов MMA

STMicroelectronics выпускает несколько серий IGBT-транзисторов и мощных быстродействующих диодов, идеально подходящих для создания инверторов сварочных аппаратов. Сверхсовременные IGBT серий V, H, HB, M и диоды серии W отличаются малыми потерями на переключения и низким напряжением насыщения. Эти замечательные качества были подтверждены на практике при испытании MMA-инверторов мощностью 4 и 6 кВт.

Рынок сварочного оборудования представляет собой быстроразвивающуюся отрасль силовой электроники. На сегодня существует множество типов сварочных аппаратов:

  • с различными технологиями – ручная дуговая сварка плавящимся электродом (manual metal arc, ММА), ручная сварка в среде защитных газов (tungsten inert gas, TIG), полуавтоматическая сварка в среде инертных (metal inertgas, MIG) или активных газов (metal active gas, MAG);
  • с различными источниками тока – трансформаторные, инверторные;
  • с постоянным выходным током (например, для сварки стали) или с переменным током (например, для сварки алюминия).

Наиболее распространенным типом сварочной технологии является MMA. Она отличается простотой и применяется как в профессиональных, так и в бытовых аппаратах. Структура такого сварочного аппарата достаточно проста и состоит из источника тока, выходного выпрямителя (опционально) и системы управления (рисунок 1).

Рис. 1. Упрощенная структурная схема сварочного аппарата

Источник тока может быть реализован на базе мощного сетевого трансформатора (трансформаторный аппарат), либо на базе инвертора (инверторный аппарат). Главными достоинствами трансформаторных аппаратов являются простота и максимальная надежность, а недостатками – большие габариты, грубое регулирование и низкое качество сварки. Инверторные аппараты, использующие современные полупроводниковые силовые ключи, не имеют этих недостатков.

Основными компонентами мощных инверторов являются IGBT-транзисторы и быстродействующие диоды. Компания STMicroelectronics выпускает силовые электронные компоненты, идеально подходящие для построения сварочных аппаратов [1]:

  • IGBT серии V со сверхнизкой энергией выключения, работающие с напряжениями до 600 В на частотах до 120 кГц;
  • IGBT серии HB с малым напряжением насыщения и низкой энергией выключения, работающие с напряжениями до 650 В на частотах до 50 кГц;
  • IGBT серии H с низкой энергией выключения, работающие с напряжениями до 1200 В на частотах до 35 кГц;
  • IGBT серии M с малым напряжением насыщения, работающие с напряжениями до 1200 В на частотах до 20 кГц;
  • диоды серии W с малым прямым падением напряжения и минимальным временем восстановления.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Igbt транзисторы как проверить

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Как проверить транзистор мультиметром — обзор лучших способов прозвона и проверки биполярных или полевых транзисторов

Транзистор является одним из самых важных электронных приборов, ведь его можно встретить практически в любом электронном приборе. Но и неблагоприятных факторов, которые могут повредить транзистор, тоже много.

Это и перегрузка по току, и превышение допустимого значения одного из его рабочих напряжений, а также его перегрев. Любая из этих причин, может привести к нарушению его работоспособности.

Определение исправности транзистора, а следовательно, его пригодности к дальнейшей эксплуатации, является одной из наиболее частых задач, которые приходится решать любому человеку, занимающемуся ремонтом какого-либо электронного устройства.

Есть довольно много приборов, которые специально для этого предназначены. Однако, в большинстве случаев, это можно сделать и с помощью обычного мультиметра.

Содержимое обзора

Особенности транзисторов

Сегодня, существует довольно много разновидностей транзисторов. Для каждого из этих типов есть своя инструкция как проверить транзистор. Среди них можно встретить и самые простые биполярные, и различные сложные составные (состоящие из нескольких деталей) приборы.

Выводы, соответственно, у различных типов транзисторов, тоже называются по-разному. Так, у биполярных это «эмиттер», «база» и «коллектор», а у униполярных, или полевых транзисторов, они именуются «исток», «затвор» и «сток».

Также есть и так называемый «IGBT» транзистор, Это биполярный транзистор с изолированным затвором. Этот прибор, сочетает в себе некоторые свойства полевых и биполярных транзисторов.

Сейчас существуют несколько основных разновидностей транзисторов:

  • Биполярный;
  • Биполярный с изолированным затвором;
  • Составной;
  • Однопереходный;
  • Полевой (униполярный);
  • Полевой с изолированным индуцированным затвором;
  • Полевой с изолированным затвором в виде p-n перехода;

Полевые транзисторы с изолированным затвором, ещё называют металл-оксид-полупроводниковыми (МОП-транзисторами).

  • Естественно что каждая разновидность транзисторов имеет свои особенности конструкции и, как следствие, характерное применение.
  • Каждый транзистор имеет свою методику проверки.
  • Естественно, те типы транзисторов, которые применяются наиболее часто, наиболее часто, приходится проверять на исправность.

Как проверить транзисторы имея только мультиметр

Как проверить транзистор мультиметром? С этим вопросом, наверное, сталкивались все, кто хоть как-о связан с ремонтом электронных устройств.

Одними из наиболее часто применяемых являются биполярные транзисторы. Такой транзистор представляет собой два p-n перехода, которые сформированы на одном кристалле полупроводника.

  • Проверка такого транзистора заключается в проверке каждого из его p-n переходов. Переходы транзистора, следует проверить как в прямом, так и в обратном направлении, Это позволит выявить два наиболее часто встречающихся дефекта, а именно: пробой и обрыв в его p-n переходах.
  • Эти действия, можно легко осуществить, с помощью любого современного мультиметра. Следует только помнить, что p-n переход открывается при определённом напряжении. Это напряжение зависит от того, из какого материала выполнен конкретный экземпляр транзистора.
  • Также, одним из ключевых параметров транзистора является, так называемый коэффициент усиления. Этот параметр, ещё называется, статический коэффициент передачи тока.
  • Для измерения этого параметра, большинство мультиметров имеет специальный вход и режим. Однако, такую функцию имеют далеко не все мультиметры. Если же ваш прибор имеет такую функцию, то с её помощью тоже можно проверить транзистор на исправность измерив его коэффициент усиления.

Если же такой функции в приборе нет, то остаётся только проверить сопротивления переходов транзистора в прямом и в обратном направлении. Большинство современных мультиметров, имеют специальный режим для измерения этой величины в полупроводниковых переходах.

Если же подобного режима нет, то можно использовать предел 2000. такой предел измерения совершенно безопасен для любого типа транзисторов, но вместе с тем, он является достаточно информативным для таких измерений.

Используя этот предел, можно с уверенностью сказать, работоспособен ли конкретный экземпляр транзистора, или нет. У исправного транзистора, сопротивление всех его переходов при прямом и обратном включении должно сильно отличаться.

Если же эти сопротивления сходны и не велики, то это говорит о том, что p-n переход пробит, а когда эти сопротивления бесконечно велики, то это говорит об обрыве цепи перехода.

Зачастую, хоть и не всегда, таким способом, удаётся сделать такую манипуляцию как проверить транзистор не выпаивая его из схемы. В тех случаях, когда транзистор удаётся проверить транзистор на плате, экономится очень много времени.

Проверка биполярного транзистора

Итак, проверка биполярного транзистора, состоит в проверке сопротивления его переходов в разных направлениях. То есть, ваш измерительный прибор надо установить в режим измерения сопротивления, на предел 2000, или, если в нём есть режим проверки полупроводников, то включить его.

  • Один из выводов мультиметра, подключить к базовому выводу транзистора, а вторым выводом последовательно коснуться эмиттерного и коллекторного выводов.
  • Запомнить показания мультиметра. Затем подключить к базе другой вывод мультиметра и сделать такие же измерения при обратной полярности.

Значения сопротивлений переходов, при этом должны различаться, при одной полярности, они должны быть очень велики, а при обратной полярности, они должны быть небольшими.

Для различных типов проводимости, эта полярность будет разной, так, для транзисторов pnp структуры переходы открываются при приложении к базе отрицательного напряжения, а для транзисторов npn структуры — положительного.

Проверка полевого транзистора

Проверка же полевого транзистора, заключается в его последовательном открытии и закрытии.

  1. Сначала нужно измерить сопротивление защитного обратного диода. Для этого, подключают к выводам истока и стока транзистора. Этот диод есть практически в каждом полевом транзисторе. Ведь этот диод создаётся технологически, при создании переходов транзистора в кристалле полупроводника. Сопротивление этого диода запоминают, или же записывают.
  2. Затем открывают, а вернее приоткрывают транзистор, это делают, подключая плюсовой щуп мультиметра, к выводу затвора проверяемого транзистора.
  3. После этого, снова измеряют сопротивление защитного диода. Если оно уменьшилось, то это является показателем того, что транзистор успешно приоткрылся.
  4. Затем закрываем транзистор, это делают подав отрицательный потенциал на его затвор. После закрытия транзистора сопротивление его обратного диода снова должно стать изначальным.
  5. В таком случае, транзистор считают пригодным.

Эти два типа транзисторов наиболее часто применяются в разных электронных приборах, а значит их проверка, наиболее часто требуется при ремонте любого прибора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector