Tehnik-ast.ru

Электро Техник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Icm7555 datasheet на русском

NE555

555 — интегральная схема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Впервые выпущен в 1971 году компанией Signetics под обозначением NE555. Функциональные аналоги оригинального NE555 выпускаются во множестве биполярных и КМОП-вариантов. Сдвоенная версия 555 выпускается под обозначением 556, счетверенная — под обозначением 558.

Представляет собой асинхронный RS-триггер со специфическими порогами входов, точно заданными аналоговыми компараторами и встроенным делителем напряжения.

Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искажённого в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи напряжения, устройства широтно-импульсного регулирования, таймеры и др.

Содержание

История разработки и модификации [ править | править код ]

Летом 1970 года США находились в экономическом кризисе. Микроэлектронная компания Signetics сократила половину персонала. Среди уволенных оказался и схемотехник Ганс Камензинд, разрабатывавший на Signetics микросхемы ФАПЧ. Камензинд продолжил работу над аналоговыми схемами у себя в гараже. Вначале он отладил схему интегрального ГУН с частотой, не зависевшей от напряжения питания. Схема ФАПЧ, впоследствии выпускавшаяся под именем NE566, содержала все структурные блоки будущего таймера 555 — делитель напряжения, компараторы, триггер и аналоговый ключ [1] . Она вырабатывала колебания треугольной формы, амплитуда которых была задана внутренним делителем, а частота — внешней частотозадающей RC-цепью.

Камензинд сумел продать разработку бывшему работодателю, а затем предложил доработать ИС 566, превратив её в ждущий мультивибратор — генератор одиночных импульсов. Идея встретила сопротивление: оппоненты полагали, что дешёвый интегральный таймер подорвёт сложившийся рынок операционных усилителей и стабилитронов, и только благодаря вмешательству руководителя продаж Арта Фьюри проект получил одобрение. Фьюри и придумал ему название NE555 (NE — префикс Signetics) [2] . Долгое время Камензинду не удавалось упаковать схему в дешёвый восьмивыводной корпус — модифицированный 556 получался девятивыводной. Решением стала замена встроенного генератора стабильного тока, заряжавшего времязадающий конденсатор, на обычный резистор. В микросхеме ГУН такая замена была недопустимой, в микросхеме таймера она оказалась оправданной. Ещё пять месяцев заняла подготовка отлаженной на макете схемы к производству. За это время сотрудники Signetics, ушедшие к конкурентам вместе с разработкой Камензинда, успели запустить её в серию, но с началом продаж настоящего NE555 отказались от этого проекта. По настоянию Фьюри NE555 продавался по беспрецедентно низкой для своего времени стартовой цене в 75 центов — в 1971 году никто из конкурентов не был готов к соперничеству на такой отметке [3] . Микросхема содержала 23 транзистора, 16 резисторов и 2 диода [4] .

По мере удешевления производства выпуск 555 освоили и конкуренты. Российскими аналогами таймеров типа 555 являются КР1006ВИ1, КР1008ВИ1 и КР1087ВИ2. КР1087ВИ3 — сдвоенный таймер (аналог 556); КР1087ВИ1 — счетверённый таймер (аналог 558). Следует заметить, что таймер КР1006ВИ1 по своей логике работы имеет одно отличие от прототипа NE555, а именно вход останова R отечественной микросхемы имеет приоритет над входом запуска S, тогда как у других микросхем — наоборот. Данное обстоятельство не отражено в официальной документации к микросхеме КР1006ВИ1 и потому нередко становилось причиной проблем у неискушённых радиолюбителей. К счастью, в большинстве конструкций, где используется таймер, приоритеты входов R и S не играют роли. Также выпускаются различные экономичные модификации таймера, выполненные по КМОП-технологии, например это микросхемы ICM7555IPA, GLC555 и их отечественный аналог КР1441ВИ1. Первую КМОП-версию начали выпускать ещё в 1970-е годы на Intersil [5] .

Описание и основные параметры схемы [ править | править код ]

Микросхема состоит из делителя напряжения с двумя опорными напряжениями для сравнения, двух прецизионных компараторов (низкого и высокого уровней), RS-триггера с дополнительным входом сброса, транзисторного ключа с открытым коллектором и выходного усилителя мощности для увеличения нагрузочной способности.

Номинальное напряжение питания базовой версии микросхемы может находиться в пределах 4,5…16,5 В. Некоторые модификации работоспособны до 18 В. КМОП-версии отличаются возможностью работы при пониженном напряжении питания (от 2 В).

Потребляемый микросхемой ток может достигать величины 6…15 мА в зависимости от напряжения питания (6 мА при VCC = 5 В и 15 мА при VCC = 15 В). Типовое потребление бывает меньше и обычно составляет 3…10 мА в состоянии низкого уровня и 2…9 мА — в состоянии высокого. Ток потребления КМОП-версий таймера не превышает сотен микроампер.

Максимальный выходной ток для отечественной КР1006ВИ1 и КМОП-версий таймера составляет 100 мА. Большинство ныне выпускаемых зарубежных аналогов, выполненных по биполярной технологии, допускает выходной ток до 200 мА и более.

Особенности и недостатки [ править | править код ]

Применённая схема неотключаемого внутреннего делителя напряжения на входе троичного компаратора делает невозможным независимую установку напряжений сравнения верхнего и нижнего компараторов, что уменьшает область возможного применения микросхемы. В этих случаях можно применить микросхему двойного компаратора с двумя встроенными логическими элементами 3И-НЕ для построения RS-триггера NE521 [6] .

Читайте так же:
Как проверить зарядное устройство аккумулятора

К недостаткам биполярного таймера также можно отнести значительный импульсный ток потребления (до 300—400 мА) в моменты переключения таймера. Этот ток вызван сквозными токами выходного каскада микросхемы. С данной особенностью связана рекомендация подключать между выводом 5 («контроль делителя») и минусом питания блокирующий конденсатор на 0,01…0,1 мкФ. Он защищает внутренний делитель микросхемы от помех, наводимых по цепи питания в моменты переключения таймера, что устраняет нестабильность его запуска и повышает общую надёжность схемы. Для аналогичных целей микросхему рекомендуется шунтировать по цепи питания керамическим конденсатором ёмкостью 1 мкФ, который располагается в непосредственной близости к микросхеме. Следует заметить, что указанный недостаток практически устранён в КМОП-версиях таймера, поэтому применение с ними дополнительных конденсаторов обычно не требуется.

Расположение выводов и обозначение на схемах [ править | править код ]

NE555 чаще всего выпускается в корпусе PDIP8 и SO8, но встречаются и другие варианты корпуса. На схемах обычно обозначается в виде прямоугольника с надписью «G1/GN», которая расшифровывается как специализированный генератор, используемый для формирования одиночных импульсов или серий импульсов. Расположение выводов является стандартным для всех однотипных микросхем:

№ вывода
NE555
№ вывода
NE556
ОбозначениеАльтер-
нативное
обозначение
НазначениеОписание
17GND-UОбщийОбщий провод, минус питания
26 / 8TRIGSЗапускКогда напряжение на этом выводе становится ниже 1/3 от VCC, на выходе появляется напряжение высокого уровня, начинается отсчёт времени.
35 / 9OUTQ или без
обозначения
ВыходНа этом выводе формируется одно из двух напряжений, примерно соответствующих GND и VCC — 1,5 В, в зависимости от состояния таймера.
44 / 10RESETEСброс (разрешение запуска)При подаче на этот вход напряжения менее 0,7 В выход микросхемы принудительно переходит в состояние низкого уровня (переключается на GND). Это происходит независимо от состояния других входов, то есть данный вход имеет наивысший приоритет. Другими словами, высокий уровень напряжения на данном входе (более 0,7 В) разрешает запуск таймера, в противном случае запуск запрещён.
53 / 11CTRLURУправление (контроль делителя)Подключен напрямую к внутреннему делителю напряжения. При отсутствии внешнего сигнала имеет напряжение 2/3 от VCC. Определяет пороги останова и запуска.
62 / 12THRRОстановКогда напряжение на этом выводе превышает напряжение на выводе CTRL, на выходе устанавливается напряжение низкого уровня, интервал заканчивается. Останов возможен, если на вход TRIG не поступает сигнал запуска, так как вход TRIG имеет приоритет над THR (исключение — микросхема КР1006ВИ1).
71 / 13DIS или ¤<РазрядВыход типа «открытый коллектор», обычно используется для разрядки времязадающего конденсатора между интервалами. Состояния этого выхода повторяют состояния основного выхода OUT, поэтому возможно их параллельное соединение для увеличения нагрузочной способности таймера по втекающему току.
814VCC+UПитаниеПлюс питания. 4,5…18 В.

Режимы работы NE555 [ править | править код ]

Прецизионный триггер Шмитта [ править | править код ]

Если на соединенные входы THRES и TRIG подать входной сигнал, то NE555 будет работать в режиме инвертирующего прецизионного триггера Шмитта. Величина гистерезиса определяется встроенным делителем и равна трети напряжения питания.

NE555: схемы, распиновки, даташиты

Микросхема NE555, согласно своим основным характеристикам, входит в категорию таймеров-универсалов. Разброс временных промежутков, которые можно в них устанавливать, очень широк. Большинство схем ne555 содержат генераторы импульсов прямоугольного типа с разной частотой и протяженностью. Устройство вместе с небольшим количеством добавочных радиоприборов, таких как резисторы и конденсаторы, является составной частью разной электроники. Это генераторы, шим регулятор на ne555, временные ne555 реле, устройства для имитации звука с разной частотой и т.д.

Цоколевка NE555

Распиновка устройства не меняется многие годы, несмотря на применение в разных видах приложений. Стандартная версия, как правило, имеет пластиковый корпус DIP-8. Поверхностный монтаж оформляется с помощью SOP-8 и SOIC-8.

Первый вывод всегда имеет маркировку в виде небольшого округлого углубления или выпуклости.

Ранее был вариант в круглом корпусе из металла LM555CH, однако сейчас он не производится. Он состоял из RS-триггера, двух компараторов, разрядного транзистора и инвертирующего усилителя.

Распиновка NE555

Основные характеристики ne555

Устройство не является одним из биполярных ИС, ТТЛ, КМОП, но легко взаимодействует с ними. Напряжение ne555, при котором устройство может нормально работать, имеет диапазон в пределах 4,5 — 16 В. Если оно равно 5 В, происходит согласование выхода таймера ne555 и ТТЛ-входов остальных схем. В противном случае, нужны еще какие-либо согласующие приборы, чтобы задать импульсам нужный уровень.

Читайте так же:
Как подключить выключатель с двумя клавишами schneider

Пределы допустимых значений

Есть ряд типовых максимальных эксплуатационных характеристик NE555. Они встречаются в самых распространенных модификациях этой микросхемы. Их различия зависят лишь от компании-производителя, но, как правило, одинаковы в большинстве технических описаний:

Напряжение источника энергии — от 4,5 до 18 Вольт.

Рассеиваемая мощность — 600 микроВатт.

Ток на выходе — 200 миллиАмпер.

Рабочая частота — 500 килоГерц.

Температура для работы — от 0 до 70 градусов, для хранения — от -65 до 150 градусов.

Если превышать указанные параметры, устройство может выйти из строя.

Чем можно заменить NE555

В советские времена существовал полный ne555 аналог микросхемы — КР1006ВИ1. Сегодня она производится в Латвии и Белоруссии. В русскоязычной инструкции к ней дана информация, полностью соответствующая англоязычному варианту ne555 datasheet.

Распиновка КР1006ВИ1

Есть один момент, важный для подбора качественной замены. В указанной версии прибора есть приоритет работы выводов “останова” над “запуском”, а в оригинальном варианте обратная ситуация. В большей части распространенных схем этого функционала нет, но не нужно совсем сбрасывать его со счетов.

Такая микросхема является незавершенным изделием с реализацией 2 эксплуатационных режимов:

Моностабильного — таймера запуска.

Мультивибратора, который генерирует одиночные импульсы.

Чтобы прибор мог работать в одном из этих режимов, его нужно немного усовершенствовать. С этой целью между контактами ставят RC-цепочку с заблаговременной подборкой конденсатора и резистора. Их показатели задают нужную частота ne555 и периодику прямоугольных сигналов на выходе устройства, когда на него подается питание. Чтобы повысить точность работы во избежание помех извне, нужно проводить шунтирование емкостью, составляющей не более 0,1 мкФ.

Ne555 — схемы включения

Работа NE555 в режиме таймера

Требуется 2 дополнительных элемента:

Когда подается питание, на 3-й по отношению к уровню земли ножке будет напряжение 0 Вольт. Конденсатор, задающий время, не имеет заряда, и в этом состоянии схема может пребывать долго, до поступления на второй контакт положительного сигнала. По величине он должен быть втрое меньше напряжения питания.

Когда сигнал подается на 2 контакт, выход микросхемы получает напряжение на уровне питающего. Его протяженность определяется временем заряда С. Когда это происходит, напряжение на выходе уменьшается почти до нуля, и устройство разряжается.

Для схемы важно, что, как только она включается, никакие влияния на контакт 2 не меняют уровень выходного напряжения. Но его можно уменьшить подачей сигнала на 4 ножку. Рассчитать временный интервал выходного импульса можно с помощью формулы: T=1.1*Rt*Ct.

NE555 в режиме мультивибратора

Работа в режиме мультивибратора

ne555 выдает прямоугольные сигналы. Их периодичность зависит от значений задающей время RC-цепочки. Конструкция немного меняется, в нее добавляется дополнительное сопротивление. Контакт 7 соединяет резисторы Ra и Rb, но отключается внутри таймера.

Когда питание подается на микросхему, на выходе возникает высокий уровень по отношению к земле, начинается заряд конденсатора. При достижении Ct заряда в размере 2⁄3 от напряжения питания, произойдет переключение схемы и снижение напряжения на выходе до 0. Тогда включается 7 контакт и устройство разряжается.

Основные черты и минусы таймера NE555

Главная отличительная черта устройства — наличие встроенного делителя напряжения. Он задает верхнее и нижнее пороговые значения, при которых срабатывают 2 компаратора. Так как его невозможно убрать, это ограничивает возможность применения схемы.

У таймера с биполярными транзисторами есть один явный минус, касающийся перехода выходного каскада между состояниями. При переключении в устройстве проходит паразитный сквозной ток. На пике он доходит до 400 миллиАмпер, что приводит к возрастанию тепловых потерь.

Чтобы решить эту проблему, нужно установить полярный конденсатор. Он имеет емкость не более 0,1 мкФ между проводом и выводом контроля. Это стабилизирует устройство при запуске и при работе вообще. Чтобы устойчивость к помехам была еще выше, в цепь питания включают конденсатор 1 мкФ.

У таймеров, в основе которых находятся КМОП-транзисторы, нет указанных проблем. Им не требуется монтаж конденсаторов извне.

Размещение и предназначение выводов

NE555 и транзисторы, которые можно использовать для его замены, как правило, имеют восьмивыводной корпус PDIP8, TSSOP, либо SOIC. Выводы, вне зависимости от вида корпуса, расположены стандартно.

Таймер графически обозначается в виде прямоугольника и подписывается как G1 (генератор одиночного импульса) или GN (мультивибратор).

  1. GND — общий. Это 1-й вывод по отношению к ключу. Его подключают к участку питания прибора со знаком “-”.
  2. TRIG — запуск. Когда низкий импульс подается на вход 2-го компаратора, устройство запускается, и на выходе появляется сигнал высокого уровня. На их протяженность влияет номинал внешних деталей С и R.
  3. OUT — выход. Напряжение при высоком уровне сигнала на выходе составляет 1,5 В, при низком — 0,25 В. Переключение составляет 0,1 мкс.
  4. RESET — сброс. Этот вход обладает максимальным приоритетом. Он управляет работой устройства при любом напряжении на других выводах. Разрешение запуска возможно при потенциале от 0,7 В. Из-за этого его, с помощью резистора, связывают с питанием устройства. Если появляется импульс менее 0,7 В, NE555 перестает работать.
  5. CTRL — контроль. Впрямую соединяется с делителем напряжения, и без воздействий извне выдается 2/3 Uпит. Когда на вывод подается сигнал управления ne555, получается модуляция сигнала. В стандартных схемах он соединяется с внешним конденсатором.
Читайте так же:
Двигатель внутреннего сгорания 4 тактный

Таймер 555

Как изготовить металлоискатель ne555 своими руками

Существует способ самодельного изготовления металлоискателя из 2 схем ne555. Они состоят из 2 катушек:

  1. Передачи — Tx.
  2. Приема — Rx.

Вся конструкция делится на 2 блока. Первый, который находится слева, состоит из генератора прямоугольных импульсов. Элементы, задающие время ( R1, R2, C1) подбираются так, что приблизительная выходная частота равна 700 Герц. Ее называют частотой слышимого спектра.

Передача импульсов происходит через резистор с ограничениями тока — R3. Расположение двух катушек на одной территории таково, что они вместе составляют перекрытие и у системы появляется индукционный баланс. Напряжение катушки приема равно нулю, а со стороны правого участка схемы нет никакой реакции. При наличии рядом металлического предмета нарушается баланс и раздается звук.

Для усиления сигнала, поступающего на вход микросхемы 2 приемной катушки используется транзистор VT1, а именно, КТ3102ЕМ, или его аналог с любым уровнем усиления. Резисторы образуют усилитель напряжения. С помощью переменных резисторов настраивается металлоискатель на ne555. R6 -для подстройки, настраивается после взаиморазмещения катушек. R7 и R8 помогают осуществлять точную настройку и устанавливаются в корпусе устройства.

В сознании звукового сигнала участвует пьезоизлучатель BA1. Его изымают из непригодного мультиметра. Желательно, чтобы он имел внутренний генератор. Сформированный на выходе DD2 сигнал импульсов сигнализирует и помогает улавливать небольшие перемены звука, когда рядом находится предмет из металла.

Как изготовить катушку

Чтобы намотать катушки металлоискателя, нужно воспользоваться эмалированным проводом для обмотки с радиусом от 0,16 мм. Подберите какой-нибудь крупный предмет и сделайте обмотку вокруг него. Провод можно достать из ненужного электродвигателя или силового трансформатора.

Достаньте намотанную катушку и обмотайте бумажной клейкой лентой. Должны получиться 2 идентичные катушки. Скотч нужен, так как со временем обмотка теряет форму. Желательно сделать их приплюснутыми, напоминающими букву D, чтобы одна не перекрывала другую. Основанием для катушек может служить сэндвич -панель, часто применяемая в пластиковых окнах. Соединять катушки с платой можно экранированным проводом.

Как собрать мигалку на ne555

В среде любителей электроники очень популярна простейшая мигалка, в основе которой — данная микросхема. В ней немного элементов, чего вполне достаточно для управления 1-2 светодиодами.

Схема обычной мигалки на NE555

В этом устройстве действует режим мультивибратора, генерирующего прямоугольные импульсы. Их длина меняется путем подбора конденсаторов и резисторов. Схема состоит из 2 попеременно включаемых светодиодов. Но если вам нужен только 1 из них, второй не обязательно включать в микросхему, это не скажется на качестве работы всего прибора.

Мигалка на NE555

Питание схемы осуществляется от 3В, может находиться в разбросе от 3 до 15. При увеличении питания нужен подбор резисторов в светодиодные цепи. Если питание идет от 12 В, резисторы должны быть 1,5 — 2 килоОм.

Собранную мигалку не нужно настраивать, она работает при включении. Не обязательно брать резистор на 220 килоОм, достаточно впайки переменного или подстроечного варианта. Это поможет сделать настройку частоты мигания светодиода.

Как изготовить реле времени ne555 самостоятельно

Чтобы лучше ознакомиться с таймером, изготовьте реле времени собственноручно. Это простая классическая схема, которую может собрать любой человек.

Реле времени ne555

Для запуска используется тумблера SB1, для настройки длительности — резистор R2. Примерное время работы указанной схемы — 6 сек. Чтобы его увеличить, не меняя характеристики R2, нужно повысить емкость С1.

Для суточного рабочего цикла нужно использовать конденсатор с емкостью 1,6 тысяч мкФ. При применении микросхемы в условиях, приближенных к реальным, фарады можно менять на более соответствующие нужному рабочему времени. Для расчета применяют формулу: T=C1*R2, С1 — емкость выбранного конденсатора, R2 — средний показатель сопротивления резистора подстройки.

Распиновка выглядит так:

Распиновка реле времени NE555

  1. GND (Земля) — уменьшается питание.
  2. Trigger (запуск) — контакт получает импульс для начала работы таймера. Возникает от нажатия тумблера.
  3. Output (выход) – при активности таймера идет генерация исходящего сигнала на контакте.
  4. Reset (сброс) — подается отрицательный сигнал, и происходит остановка таймера.
  5. Control Voltage (контроль) — повышается устойчивость прибора к помехам.
Читайте так же:
Аккумуляторный перфоратор с пылесборником

Приобрести NE555 можно на Алиэкспресс(по ссылке) и в других интернет-магазинах по максимально доступным ценам.

CD4060 — двоичный счетчик со встроенным генератором. Описание, распиновка

CD4060 — это КМОП-микросхема с двоичным счетчиком и генератором в одном корпусе. Ее можно использовать для формирования дискретных задержек по времени или для создания сигналов разных частот. И все это благодаря тому, что CD4060 имеет встроенный модуль генератора, для работы которого требуется всего несколько внешних пассивных электронных компонентов.

Параметры CD4060

  1. Напряжение питания: 3В … 15В.
  2. Максимальная рабочая частота: 3,5 МГц (5В), 8 МГц (10В), 12 МГц (15В).
  3. Максимальные выходные токи логических уровней: 1мА (5В), 2,5 мА (10В), 6,8 мА (15В).

Распиновка CD4060

Распиновка CD4060

Что такое 14-ступенчатый двоичный счетчик с осциллятором?

Двоичный счетчик пульсаций — это схема, состоящая из последовательно соединенных триггеров. Выход одного из них соединен с входом CLK следующего. Вход CLK триггера слева — это вход счетчика.

14-ступенчатый двоичный счетчик с осциллятором

Вместо четырех триггеров, как в приведенном выше примере, CD4060 имеет 14 последовательно соединенных триггеров. Это означает, что он может считать до 16383 (максимальное значение 14 бит).

Данная микросхема также имеет встроенный генератор, который позволяет создавать тактовый импульс для автоматического увеличения счетчика. Это делает CD4060 схемой таймера, которую можно использовать для выбора между различными временными задержками (или частотами) в зависимости от того, какой Q-выход мы будем использовать.

Например, если мы выберем такие значения резистора и конденсатора, при которых генератор будет генерировать тактовый импульс с частотой 1 Гц, то это позволит увеличивать счетчик каждую секунду.

Таким образом, для получения 8-секундной задержки мы можете использовать выход Q3, а для задержки в 2 часа 16 минут (8192 секунды) мы можете использовать выход Q13.

Как использовать CD4060

Прежде всего, нам необходимо подключить вывод VDD к положительной клемме питания, а вывод GND — к отрицательной клемме питания. Мы можем использовать источник питания с напряжением от 3 до 15 В. Хотя некоторые версии микросхемы 4060 поддерживают напряжение до 20В. Все это можно уточнить в datasheet на CD4060

Чтобы активировать генератор, подключите резистор Rt к выводу REXT, конденсатор Ct к выводу CEXT и резистор R2 к выводу CLK и соедините все оставшиеся свободные выводы Rt, Ct и R2 вместе:

Контроллер ККМ (PFC) L6561

В одной из предыдущих статей мы рассмотрели общий принцип работы активных корректоров коэффициента мощности (ККМ или PFC). Однако ни одна схема корректора не заработает без контроллера, задача которого — правильно организовать управление полевым транзистором в общей схеме.

В качестве яркого примера универсального PFC-контроллера для реализации ККМ можно привести популярную микросхему L6561, которая выпускается в SO-8 и DIP-8 корпусах, и предназначается для построения сетевых блоков коррекции коэффициента мощности номиналом до 400 Вт (без применения дополнительного внешнего драйвера управления затвором).

Контроллер PFC L6561

Режим управления Boost-ШИМ, характерный для данного контроллера, позволяет добиться коэффициента мощности до 0,99 с искажениями тока в пределах 5% при первичном напряжении переменного тока от 85 до 265 вольт. Далее рассмотрим назначение выводов микросхемы и типовую схему ее применения.

Микросхема ККМ L6561 Вывод№1 — INV – inverting input

Данный вывод является инвертирующим входом усилителя ошибки, задача которого — в режиме реального времени измерять постоянное напряжение на выходном конденсаторе преобразователя с тем, чтобы поддержать его постоянным и без превышения. Выходное напряжение измеряется с помощью резистивного делителя.

Пороговое напряжение срабатывания усилителя составляет здесь 2,5 вольта. Не важно, на какое выходное напряжение изготавливается преобразователь: 240, 350, 400 вольт, — если напряжение на нижнем плече резистивного делителя достигло пороговых 2,5 вольт, в этот момент работа внутреннего драйвера выходного каскада блокируется и дальнейшее повышение выходного напряжения предотвращается. Для срабатывания усилителя ошибки достаточно входного тока в пределах 250-400 мкА.

Вывод№2 — COMP – compensation network

Данный вывод является выходом компаратора усилителя ошибки, он предназначен для установки внешней цепи коррекции АЧХ усилителя. Цель, с которой сюда добавляют внешние компоненты, — защита от паразитного самовозбуждения усилителя при замкнутой петле обратной связи по напряжению. В теорию вдаваться не будем, просто отметим данный аспект.

Вывод№3 — MULT — multiplier

На этот вывод, через резистивный делитель, который установлен на входе сразу после выпрямителя и пленочного конденсатора, подается выпрямленное напряжение сети переменного тока, форма которого синусоидальна, а амплитуда его достигает 3,5 вольт, причем в каждый момент времени это напряжение пропорционально амплитуде выпрямленного напряжения, подаваемого на рабочий дроссель.

Таким образом, через данный вход к контроллеру поступает информация о текущей фазе синусоиды (точнее ее половины, полученной путем выпрямления диодным мостом) напряжения, подаваемого к преобразователю — это опорный синусоидальный сигнал для токовой петли.

Читайте так же:
Дрель для маникюра и педикюра как выбрать

Микросхема L6561

Вывод№4 — CS – current sensor

К данному входу подается напряжение с токового шунта, который установлен в истоковой цепи полевого транзистора. Пороговое напряжение составляет здесь от 1,6 до 1,8 вольт, с этого момента ток в рамках периода больше не повышается, так как данный порог считается пределом для полевого транзистора. Этот вывод служит для защиты полевого транзистора от перегрузки по току путем регулировки ширины рабочего импульса (ШИМ), — как только предел тока достигнут, сразу прекращается текущий импульс управления транзистором, и драйвер разряжает затвор.

Вывод№5 — ZCD – zero current detector

На данный вывод подается напряжение с датчика нулевого тока, которое поступает от дополнительной обмотки дросселя, подключенной к микросхеме через резистор. Когда очередной цикл передачи энергии от дросселя к нагрузке завершен, ток дросселя падает до нуля, следовательно и напряжение на дополнительной обмотке будет нулевым. В этот момент компаратор детектора нуля дает команду на начало очередного цикла отпирания внешнего транзистора для отработки следующего периода накопления энергии дросселем, и так по кругу.

Вывод№6 — GND — Ground

Сюда подключается общий провод, шина заземления.

Выводы микросхемы

Вывод№7 — GD – Gate driver output

Выход двухтактного драйвера типа push-pull для управления внешним транзистором. Данный выходной каскад способен обеспечить пиковый ток управления затвором (заряд и разряд затвора) в 400 мА. Если такой величины тока мало, то можно прибегнуть к подключению внешнего, более мощного драйвера управления затвором.

Вывод№8 — Vcc – Supply voltage

Вход положительного питания относительно GND, рассчитан на диапазон от 11 до 18 вольт. Возможно питание прямо от дополнительной обмотки рабочего дросселя (от обмотки датчика нулевого тока), как и предлагается в даташите на микросхему. При питании напряжением 12 вольт, когда ключ работает на частоте в 70 кГц и при емкости затвора 1нФ, микросхема потребляет ток до 5,5 мА. В даташите приводится схема получения стабилизированного напряжения для питания микросхемы при помощи стабилитрона 1N5248B.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Светодиодные лампы с линейным стабилизатором.

Чтобы то же не произошло с вновь приобретённой, решил облегчить ей жизнь снижением рабочего тока.В таком режиме https://0jihad0.livejournal.com/10104.html далеко не самая лучшая по качеству лампа живет больше года и не болеет.

DSC_0213.jpg

Потроха выглядят так

на лицо увеличение технологичности, никаких проводков и замотанного в изоляцию драйвера, всё максимально удобно для быстрой сборки, но не разборки. Судя по всему такая конструкция становится стандартом.

Сразу же бросается в глаза отсутствие дроселя и прочих причандалов, уж не зафигачили ли китайцы импульсное управление с подачей коротких импульсов тока, ограниченного сопротивлением? Но оказалось, BP5131D всего лишь обычный линейный регулятор тока. Но в таком случае на нем должны рассеиваться десятки ватт мощности!

Безымянный.jpg

Исследования показали, что это не светодиоды, а сборки, всего светодиодов 80 с лишком, и падает на них 260 В. На самой микросхеме 40 В при 30 мА(измерено на токоограничительном резисторе). Максимально допустимый через микросхему 80 мА. При снижении рабочего тока КПД светодиодов возрастает, здесь, благодаря большому количеству светодиодов, при низком токе лампа даёт тот же световой поток при той же активной потребляемой мощности что и обычные импульсные лампы. Потребляет она 10 Вт, светит примерно как 60-ка. 90Вт, это конечно, чушь.
Драйвер похоже предназначен для так называемых филаментных ламп, а это их нелепый архаичный предшественник.

Светодиоды вышли из строя из-за перегрева, хотя стоят на радиаторе, думаю от филаментных надёжности ожидать тоже не стоит. Извлечением одного сопротивления уменьшаю ток до 18 мА.

Всё же китайцам на слово верить не стоит, решил посмотреть осциллографом.

20171130_190559.jpg

Переменная составляющая на одной светодиодной сборке(падение 17В), деление на 10.

Да, я знаю про скриншоты.

20171130_191138.jpg

Колебательный процесс на мегагерцах

20171130_184753.jpg

переменная + постоянная на регуляторе /10, вот где гасятся пульсации.

Итого, обычный линейный регулятор, как крен12. Можно использовать в блоках питания ламповых усилителей.

Данных по надёжности подобных ламп нет нигде, но как то так выходит, она сравнима с лампами накаливания, а экономки более надёжны. При нашей бесплатной электроэнергии покупать светодиодные лампы имеет смысл только из любви к искусству, поэтому тест на надёжность откладывается, пока что нибудь не изменится.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector