Tehnik-ast.ru

Электро Техник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рекомендуемые режимы упрочняющей термической обработки и свойства высокопрочных среднелегированных сталей

Рекомендуемые режимы упрочняющей термической обработки и свойства высокопрочных среднелегированных сталей.

Для достижении высокой прочности среднелегированные стали подвергают обычной закалке на мартенсит и низкому отпуску при 220— 250 °С, который улучшает пластичность, вязкость и особенно сопротивление разрушению при сохранении высокого уровня прочности.

Во многих случаях еще более высокий комплекс этих свойств, определяющих конструкционную прочность стали, достигается в результате изотермической закалки на нижний бейиит или низкой изотермической закалки, после которой структура стали состоит из нижнего бейнита и мартенсита. В ряде случаев после изотермической закалки проводят низкий отпуск, что улучшает сопротивление разрушению.

В (табл. 1) приведены рекомендуемые режимы упрочняющей термической обработки среднелегированных сталей. Стали имеют повышенную прокаливаемость:

  • сталь 25Х2ГНТА — до 30 мм;
  • сталь 30ХГСН2А — до 80 мм;
  • для стали 40ХСН2МА размеры сечения не регламентируются.

Таблица 1. Рекомендуемые режимы упрочняющей термической обработки среднелегированных сталей.

Стальσв, МПаРежим термической обработки
30ХГСН2А1600—1800Закалка при 900 °С, масло; отпуск при 290 °С, 1 ч.
1500—1700Изотермическая закалка с выдержкой в селитре при 270—300 °С; отпуск при 200—300 °С, 1 ч.
1400—1600Изотермическая закалка с выдержкой в селитре при 280—330 °С
40ХСН2МА ∗11800—2000Закалка при 900 °С, масло; отпуск при 200—260 °С.
1800—2000Изотермическая закалка с выдержкой в селитре при 240—280 С, 2—3 ч; отпуск при 240—260 С, 2—3 ч.
25Х2ГНТА1500—1650Закалка при 860 °С, масло; отпуск при 200—230 °С, 2-3 ч.
1500—1650Изотермическая закалка с выдержкой в селитре при 200—250 °С, 1 ч; отпуск при 200—230 °С
∗1 Применение изотермической закалки предпочтительнее.

  • 1, 3 — закалка в масло с отпуском при 200 °С, σв=1750 МПа;
  • 2 — изотермическая закалка в селитру при 300 °С, σв=1600 МПа

Механические свойства сталей после различных вариантов упрочняющей обработки для различных температур испытаний приведены в (табл. 2—4). На (рис. 1) представлена диаграмма растяжения одной из сталей, а на рис. 2—5 — их характеристики сопротивления усталостному разрушению в зависимости от вида используемой упрочняющей обработки. Показатели вязкости и трещиностойкости сталей приведены в (табл. 5, 6).

  • 1, 2 — шлифованные образцы;
  • 3 — обкатка роликом после шлифования;
  • 1, 3 — закалка в масле с отпуском при, 200 °С, σв=1720 МПа;
  • 2 — изотермическая закалка в селитру при 300 °С, σв=1600 МПа
  • сплошные линии — закалка в масло;
  • штриховая линии — изотермическая закалка.
  • 1 — шлифование;
  • 2 — шлифование и обкатка роликом

Прочность среднелегированных сталей тем выше, чем больше в них содержание углерода, но при этом будет более низким показатель трещиностойкости K1c в том, числе сопротивление коррозии под напряжением. Поверхностное пластическое деформирование затрудняет образование трещины усталости, замедляет скорость роста малых трещин и значительно повышает сопротивление малоцикловой усталости как на воздухе, так и в коррозионной среде. Для защиты от общей коррозии деталей из этих сталей применяют кадмирование, оксидное фосфатирование. Сопротивление коррозии под напряжением можно существенно повысить, применив в качестве финишной операции поверхностное пластическое деформирование:

  • дробеструйное,
  • пневмодинамическое,
  • вибронаклеп и др.

Таблица 5. Ударная вязкость сталей (KCU, МДж/м 2 ) при различной температуре испытаний.

СтальРежим обработкиТемпература испытаний, °C
+20-40-70-130-196
30ХГСН2АИзотермическая закалка с выдержкой в селитре при 280— 330 °С0,90,70,250,13
25Х2ГНТАЗакалка при 860 °С, отпуск при 200—250 °С0,70,60,60,2

Разрабатывается принципиально новый метод повышения усталостной прочности высокопрочных сталей, заключающийся в имплантации генерируемых источником высокой энергий ионов азота, бора и других в поверхностные слои стальной детали.

  • 1, 2 — воздух;
  • 3, 4 — вода;
  • X — шлифование;
  • • — наклеп дробью

При применении среднелегированных сталей высокой прочности следует учитывать их повышенную чувствительность к концентрации напряжений, особенно при циклических нагрузках и высоких значениях коэффициента формы.

Нормализация стали — процесс, температура, режимы, время

Нормализацию стали часто рассматривают с двух точек зрения — термической и микроструктурной.

В термическом смысле и классическом понимании, нормализация стали — это нагрев стали до аустенитного состояния с последующим охлаждением на спокойном воздухе. Иногда к нормализации относят также и операции с охлаждением ускоренным воздухом.

Место температуры нормализации на диаграмме состояния железо-углерод показано на рисунке 1.

Рисунок 1 – Упрощенная диаграмма состояния железо-углерод.
Заштрихованная полоса – температура нормализации сталей

С точки зрения микроструктуры нормализованной структурой считают перлит для стали с содержанием углерода 0,8 %, а для сталей с меньшим содержанием углерода — доэвтектоидных сталей — смесь перлита и феррита.

Операцию нормализации применяют для большинства сталей и, в том числе стальных отливок. Очень часто сварные стальные швы нормализуют для измельчения структуры стали в зоне воздействия сварки.

Суть процесса

Процедура нормализации выглядит следующим образом. Деталь разогревают до температур, которые превышает максимально допустимые параметры (Ас1, Ас3) на 30 – 50 градусов Цельсия, затем, какое-то время ее выдерживают под воздействием этой температуры, после чего ее охлаждают.

Подбор температуры выполняют, руководствуясь маркой стали. Так, сплавы содержащие 0,8 % углерода так называемые заэвтектоидные, обрабатывают при температурах, лежащих между критическими точками Ас1 и Ас3.

Что такое критические точки – так называют температуры, при которых происходят фазовые изменения и структуры сплава при его нагреве или охлаждении.

Результатом этого становиться то, что в твердый раствор попадает некоторый объем углерода и закрепляется аустенита. То есть, на свет появляется структура, состоящая из мартенсита и цементита. Именно цементит приводит к росту стойкости к износу и твердости. Нагрев высокоуглеродистой стали свыше ас3 приводит к тому, что увеличиваются внутренние напряжения. Это происходит из-за того, что растет количество аустенита, в следствии роста концентрации углерода.

Сталь с содержанием углерода менее 0,8% при нагреве свыше критической точки Ас3 приобретает повышенную вязкость. Это происходит потому что в стали этого типа появляется аустенит (мелкозернистый), переходящий в мартенсит (мелкозернистый).

Доэвтектоидная сталь не обрабатывают при температурах, расположенных в диапазоне Ас1 – Ас3. Так как в этом случае появляются феррит, который снижает параметры твердости.

Читайте так же:
Ингибиторная защита от коррозии

Время необходимое для выполнения операции

Для получения однородной структуры сплава, при определенной температуре, требуется какое-то время. Это время и будет определено как время выдержки стали при нормализации. Опытным путем определено, что слой металла толщиной в 25 мм через час становится однородным. Таким образом. и определяют время нормализации.

Завершающий этап – охлаждение

Скорость охлаждения играет существенную роль в образовании объема перлита и размера его пластин. Многочисленные исследования показали, что высокая интенсивность охлаждения увеличивает количество перлита и сталь получает повышенную твердость и прочность. Малая интенсивность охлаждения приводит к тому, что сталь теряет твердость и прочность.

При обработке деталей с существенными перепадами размеров, например. валов, целесообразно убрать напряжения, возникающие под воздействием колебания температур. Для этого их предварительно нагревают в емкости, заполненной разными солями. При понижении температуры допускается ускорить этот процесс помещая горячие детали в воду или специально подобранное масло.

Другими словами, нормализация стали устраняет напряжения внутри детали, минимизирует ее структуру. То есть она оказывает прямое влияние на изменение микроструктуры стальных сплавов.

Цель нормализации стали

Цели нормализации стали могут быть различными: например, как для увеличения, так и для снижения прочности и твердости в зависимости от термической и механической истории изделия.

Цели нормализации часто пересекается или даже путается с отжигом, термическим упрочнением и отпуском для снятия напряжений. Нормализацию применяют, например, для улучшения обрабатываемости детали резанием, измельчения зерна, гомогенизации зеренной структуры или снижения остаточных напряжений. Сравнение температурно-временных циклов для нормализации и отжига показано на рисунке 2.

Рисунок 2 ─ Сравнение температурно-временных циклов нормализации и полного отжига. Более медленное охлаждение при отжиге приводит к более высокой температуре феррито-перлитного превращения и более грубой микроструктуре, чем при нормализации.

Для стальных отливок нормализацию применяют для гомогенизации их дендритной структуры, снижения остаточных напряжений и большей восприимчивости к последующему термическому упрочнению.

Изделия, полученные обработкой давлением, могут подвергать нормализации для снижения полосчатости структуры после прокатки или разнозернистость после ковки.

Нормализацию с последующим отпуском применяют вместо обычной закалки, когда изделия имеют сложную форму или резкие изменения по сечению. Это делают, чтобы избежать образования трещин, коробления и чрезмерных термических напряжений.

Процесс нормализации и основные принципы

С точки зрения физики процесса нормализация стали представляет собой обработку металла термическим образом, при котором его нагревают выше верхнего критического порога Асm и Ас3 на величину в 30–50 градусов по Цельсию. На этом уровне происходит выдержка металла, а далее его охлаждение при обычных температурных условиях окружающей среды.

После достижения точки Ас3 наблюдается завершение фазы, когда происходит преобразование в аустенит феррита с одновременной нормализацией структуры полученного вещества. За преодолением порога Асm следует процесс, где уже из аустенита начинает выделяться цементит вторичный (если температура идет в сторону уменьшения) и прекращается его растворение в аустените (при увеличении температуры относительно этой точки).

Если сталь была слишком перегрета и из-за этого произошло укрупнение зерна решетки, для уменьшения этого размера изделие подвергают такой обработке, где температуру нормализации стали повышают на 100–150 градусов по Цельсию относительно точки ACj.

Не стоит путать нормализацию с отжигом: у каждого процесса есть свои особенности. При нормализации стали охлаждение происходит в два раза быстрее. С экономической точки зрения такой процесс более рентабелен, так как не требует применения печи для постепенного охлаждения.

Метод нормализации стали не всегда можно применять по отношению к некоторым маркам стали, потому что после такой обработки у них остается повышенная твердость, которая не во всех случаях нужна. Это касается тех металлов, где содержание углерода превышает показатель в 0.4 %. В низкоуглеродистых сталях этот эффект, как правило, не наблюдается. Выходом из ситуации может быть применение высокого отпуска после нормализации при температурном режиме в 650–700 градусов по Цельсию.

Скорость охлаждения стали при нормализации

Скорость охлаждения при нормализации обычно не является критической величиной. Однако, когда изделие имеет большие различия по размерам сечения, принимают меры по снижению термических напряжений, чтобы избежать коробления.

Оборудование и материалы

В качестве оборудования для проведения нормализации применяют печи для закалки и отжига стали. В печном оборудовании может быть использован газовый нагрев. Такие системы содержат:

  1. Камеру. Это специальный, герметично закрывающийся бокс, где располагают заготовки.
  2. Нагревательные элементы в виде горелок. Предназначены для нагнетания температуры в камере печи. Горелки могут быть плоско-факельного типа, работать по принципу косвенного или прямого нагрева.
  3. Устройства, выполняющие запорно-регулирующие функции.
  4. Модули управления мощностью. Они могут быть комбинированного типа, пропорциональные или импульсные.
  5. Теплоизоляционный материал.

Принцип нагрева внутренней камеры печи от газа может быть реализован через воздушное пространство, тогда горелку располагают в центре. Также могут применяться регенерационные и рекуперационные конструкции горелок.

В печах сопротивления, где используется косвенный метод нагрева, нагревательная система может быть выполнена по разным принципам. Чаще всего здесь используют тиристорные схемы для управления мощностью, которые в свою очередь контролируются при помощи микропроцессорных схем.

Уважаемые посетители сайта, все, кто разбирается в технологическом процессе выполнения операций по нормализации стали, оставьте свои дополнения к статье в комментариях!

Поиск записей с помощью фильтра:

Выдержка при температуре нормализации

Роль длительности выдержки при температуре нормализации заключается только в том, чтобы обеспечить гомогенизацию аустенитной структуры до начала охлаждения. Один час выдержки на каждые 25 мм толщины сечения является нормой.

Скорость охлаждения при нормализации значительно влияет на количество перлита, его размеры и толщину перлитных пластин. Чем выше скорость охлаждения, тем больше образуется перлита, а его пластины становятся тоньше и ближе друг к другу. Увеличение доли перлита в структуре и его измельчение дают повышение прочности и твердости стали. Более низкие скорости охлаждения означают менее прочную и твердую сталь.

После того, как изделия однородно охладились по своему сечению ниже нижней критической точки Аr1, их можно охлаждать в воде или масле для снижения общей длительности охлаждения.

Другие методы термической обработки

Кроме нормализации, термическая обработка стали включает в себя такие процессы:

  • отжиг;
  • закалка;
  • отпуск;
  • обработка криогенным способом;
  • дисперсионное твердение.
Читайте так же:
Лазер для гравировки своими руками

Принцип выполнения и цели у каждой технологии одинаковые, однако, каждая имеет свои отличительные особенности:

  • отжиг — благодаря ему структура перлита будет максимально тонкой, поскольку охлаждение происходит в печи. Отжиг позволяет снизить структурную неоднородность, а также напряжение после обработки посредством литья или под давлением, придать структуре мелкозернистость или улучшить обработку резанием;
  • закалка — принцип технологии такой же, но температуры более высокие по сравнению с нормализацией и скорость охлаждения тоже выше. Процесс происходит в жидкостях. Благодаря закалке повышается прочность и твердость материала, а детали в итоге будут иметь низкую ударную вязкость и хрупкость;
  • отпуск — отпуск, выполняемый после закалки, снижает напряжение и хрупкость. С этой целью материал прогревается до малой температуры и охлаждается на улице. На фоне повышения температуры предел прочности и твердость падают, и повышается ударная вязкость;
  • криогенная обработка — благодаря ей материал будет иметь равномерную структуру и твердость, эта технология максимально подходит для закаленной углеродистой стали;
  • дисперсионное твердение — окончательная обработка, в ходе которой дисперсные частицы выделяются в твердом растворе после закалки при малом нагреве для придания материалу прочности.

Для выполнения термической обработки потребуется следующее:

Виды и режимы термической обработки сталей

В зависимости от химического состава сталей, размеро поковок и требований, предъявляемых к готовым детали машин, в кузницах немашиностроительных предприяти возможно применение следующих видов термической обработки сталей.

Отжиг состоит в нагреве сталей до определенной температуры, выдержке и затем очень медленном охлаждении, чаще всего вместе с горном или печью.

Нагрев стали для отжига проводится в кузнечном горне или печи. Для того чтобы при нагреве в горне не допустить выгорания углерода с поверхности стали, поковки укладывают в металлические ящики (рис. 8.1), пересыпают их сухим песком, древесным углем или металлической стружкой и нагревают до температуры, необходимой для отжига данной марки стали. Продолжительность нагрева принимают в зависимости от размеров поковок, примерно по 45 минут на каждые 25 мм наибольшей толщины поперечного сечения. Нагрев выше температуры для отжига и длительная выдержка при этой температуре недопустимы, так как возможно образование крупнозернистой структуры, что резко уменьшит ударную вязкость металла.

Охлаждение поковок можно осуществлять несколько быстрее, чем вместе с горном и печью, если воспользоваться следующими рекомендациями. Углеродистые качественные конструкционные стали следует охлаждать приблизительно до 600 °С на воздухе с целью получения мелкозернистой структуры, а затем, чтобы избежать

возникновения внутренних напряжений, охлаждение осуществлять медленно в печи или в ящике с песком или золой, установленном в горне. Инструментальные углеродистые стали следует охлаждать в печи или горне до

Рнс. 8.1. Ящик с песочным затво-

ром для термической обработки

поковок и деталей:

1 — крышка; 2 — песок; 3 — ящик;

4 — поддон; 5 — поковка; 6 — песок

или древесный уголь

670 °С, а затем скорость охлаждения можно ускорить, открыв заслонки печи и удалив топливо из горна.

В зависимости от цели изменения структурных превращений (диаграмма состояния показана на рис. 8.2) применяют следующие разновидности отжига.

Полный отжиг состоит в нагреве сталей, содержащих углерода до 0,8%, до температуры выше линии SG на 30. 50°С, что отражено на диаграмме состояния железо—углерод (рис. 8.2), т. е. Лс3 + (30. 50°С), а сталей с содержанием углерода больше 0,8% до температуры

161

выще линии SIC на 30. 50°С, т. е. Act + (30. 50 °С)’, выдержка при этой температуре до полного прогрева поковки и последующем медленном охлаждении вместе с горном или печью. Поковки из углеродистых сталей охлаждают со скоростью 50. 150 градус/ч, а из легированных сталей — 20. 60 градус/ч. В результате в металле снимаются внутренние напряжения, он становится более мягким и пластичным, но менее твердым.

Низкий отжиг состоит в нагреве поковок до температуры, немного превышающей критическую 723 °С (примерно до 740. 780 °С), с периодическим изменением температуры ниже и выше точки S и медленном охлаждении до 670 °С, после чего охлаждение можно ускорить. Такой отжиг применяют для уменьшения твердости, увеличения пластичности и улучшения обрабатываемости поковок из инструментальных сталей.

Рекристаллизационный отжиг состоит в нагреве сталей до температуры 650. 700 °С и охлаждении на воздухе. С помощью этого отжига снимают наклеп и исправляют структуру сталей, нарушенную во время ковки при низких температурах.

Нормализационный отжиг (нормализация) состоит в нагреве поковок до температуры 780. . 950 °С, непродолжительной выдержке при ней и последующем охлаждении на воздухе. Нормализацию, как правило, применяют для устранения крупнозернистой структуры, образовавшейся в результате вынужденного или случайного увеличения времени нахождения заготовок в печи для исправления структуры перегретой стали (перегрева), измельчения зерна, смягчения стали перед обработкой резанием и получения при резании более чистой поверхности, а также общего улучшения структуры перед закалкой.

Закалка состоит в нагреве углеродистых сталей, содержащих углерода до 0,8%, до температуры выше линии SG на 20. 40 °С (рис. 8.2), т. е. Ас3 + (20. 40 °С), а сталей с содержанием углерода более 0,8% —до температуры выше линии SK на 20. 40°С, т. е. Асх + (20. 40 °С), выдержке при этих температурах и охлаждении в охлаждающей среде о соответствующей скоростью охлаждения (см. табл. 8.1).

Стали с содержанием углерода меньше 0,25% в результате закалки свои свойства изменяют незначительно, поэтому обычно их не закаливают.

Закалку применяют для увеличения твердости, прочности и износостойкости деталей, получаемых из поковок. В практике обычно закаливают рабочие части различного технологического инструмента (резцов, сверл, напильников, зубил, молотков, кувалд, плоскогубцев, отверток и др.), мерительного инструмента (скоб, калибров, циркулей и др.), тяжелонагруженные и работающие на истирание детали машин (клапаны, шатуны, коленчатые валы, лемехи плугов и др.).

Нагрев стали под закалку осуществляют в горнах или нагревательных печах. Детали в горны укладывают так, чтобы холодное дутье воздуха не попадало непосредственно на сталь. Нужно следить, чтобы нагрев происходил равномерно. Чем больше углерода и легирующих элементов содержит сталь, чем массивнее деталь и сложнее ее форма, тем медленнее должна быть скорость нагрева под закалку. Продолжительность выдержки при закалочной температуре ориентировочно принимается равной 0,2 от времени нагрева. Слишком длительная выдержка при закалочной температуре не рекомендуется, так как при этом интенсивно растут зерна и сталь теряет прочность.

Читайте так же:
Как выбрать лазерный дальномер для дома

Охлаждение является исключительно важной операцией закалки, так как от него практически зависит получение требуемой структуры в металле. Для этого должно быть достаточное количество охлаждающей жидкости, чтобы температура во время нахождения в ней детали повышалась незначительно.

Выбор охлаждающей среды зависит от марки стали, величины сечения детали и требуемых свойств, которые

Рис. 8.3. Способы погружения деталей в охлаждающую жидкость:

1 — зубило; 2 — зуб барабана молотилки; 3 — топор; 4 — лемех; 5 —, сверло; 6, 9, 10 — фрезы; 7 — напильник; 8 — ручка плоскогубцев;’ 11 —.

должна получить сталь после закалки. Стали с содержанием углерода от 0,3 до 0,6% обычно охлаждают в воде, а с большим содержанием углерода — в масле. При этом следует учитывать конфигурацию деталей и их сечение. Детали со сложной конфигурацией, с резкими переходами от малого сечения к большому и массивные детали охлаждать в воде опасно, так как на них могут появиться трещины.

При закалке стали сложным является получение желаемого двухскоростного охлаждения ее. В интервале температур 650. 450 °С требуется быстрое охлаждение со скоростью 20. 30°С/с. Это позволяет избежать коробления и трещин.

Из табл. 8.1 видно, что лучшей закалочной средой была бы двухслойная жидкость, в которой верхний слой — вода с температурой 18. 28°С, а нижний — машинное масло. Но, к сожалению, такую двухслойную жидкость получить нельзя, потому что масло всплывает на поверхность.

При определенном навыке можно применять следующий режим охлаждения. На несколько секунд погрузить деталь в воду, а затем быстро перенести ее в масло.

При большом сечении детали наружные слои охлаждаются быстрее, чем внутренние, и поэтому твердость на поверхности получается больше, чем в середине. Углеродистые стали, например стали 40 и 45, закаливаются на глубину 4. 5 мм, а глубже будут частично закаленная зона и незакаленная сердцевина. Легирующие элементы — марганец, хром, никель и др. способствуют более глубокой закалке. Например, сталь 30Х закаливается на глубину .9 мм, сталь 40СХ — на глубину 12 мм и сталь ЗОХНЗ — на глубину 10 мм.

Некоторые детали (режущая часть сегмента сенокосилки, рабочая часть зуба барабана молотилки, лезвие лемеха плуга, палец звена гусеницы трактора и др.) нуждаются в большой прочности на поверхности при сохранении мягкой и вязкой сердцевины. Такие детали рекомендуется подвергать поверхностной закалке. Один из самых простых способов такой закалки состоит в загрузке детали в печь с высокой температурой (950. 1000 °С), быстром нагреве поверхности до закалочной температуры и охлаждении с большой скоростью в проточной охлаждающей среде (см. табл. 8.1).

Часто закалку выполняют сразу после ковки без дополнительного нагрева, если температура поковки после ковки будет не ниже закалочной температуры.

Закалка может быть сильной, умеренной и слабой. Для получения сильной закалки в качестве охлаждающей среды применяют воду при 15. 20°Сдо погружения в нее детали и водные растворы поваренной соли и соды (карбоната натрия). Умеренная закалка получается при использовании воды со слоем масла толщиной 20. 40 мм, нефти, мазута, мыльной воды, жидкого минерального масла, а также горячей воды. Слабая закалка получается, если применять в качестве охлаждающей среды струю воздуха или расплавленный свинец и его сплавы.

Закалка требует внимания и умения.

Отпуск состоит в нагревании закаленной стали до температуры ниже Ас (см. рис. 8.2), выдержке при этой температуре некоторое время и быстрого или медленного охлаждения, как правило, на воздухе. В процессе отпуска в металле структурных изменений не происходит, однако уменьшаются закалочные напряжения, твердость и прочность, а пластичность и вязкость увеличиваются. В зависимости от марки стали и от предъявляемых к детали требований по твердости, прочности и пластичности применяют следующие виды отпусков.

образованию трещин, перегреву и обезуглероживании* поверхности, а также к желоблеиию (короблению), котор ‘ в значительной степени зависит от способа и скорости погружения детали в охлаждающую жидкость.

Закалка—не окончательная операция термической обработки, так как после нее сталь становится не только прочной и твердой, но и очень хрупкой, а в поковке возникают большие закалочные напряжения. Эти напряжения достигают таких значений, при которых в поковках появляются трещины или детали из этих поковок разрушаются в самом начале их эксплуатации. Например, только что закаленный кузнечный молоток нельзя использовать, так как при ударах им о металл от него будут откалываться кусочки металла. Поэтому для уменьшения хрупкости, внутренних закалочных напряжений и получения требуемых прочностных свойств стали после закалки поковки подвергают отпуску.

Высокий отпуск состоит в нагреве закаленной детали до температуры 450. 650°С, выдержке при этой температуре и охлаждении. Углеродистые стали охлаждаются на воздухе, а хромистые, марганцовистые, хромокремниевые — в воде, так как медленное охлаждение их приводит к отпускной хрупкости. При таком отпуске почти полностью ликвидируются закалочные напряжения, увеличиваегся пластичность и вязкость, хотя заметно уменьшается твердость и прочность стали. Закалка е высоким отпуском по сравнению с отжигом, создает нанлучшее соотношение между прочностью стали и ее вязкостью. Такое сочетание термообработки называют улучшением Улучшению подвергают сильнонагруженные детали машин, такие, как коленчатые валы, шатуны, диски плугов и борон, оси и др., изготовленные из углеродистых сталей с содержанием углерода 0,3. 0,5%

Средний отпуск состоит в нагреве закаленной

детали до температуры 300. 450 °С, выдержке при этой температуре и охлаждении на воздухе. При таком отпуске увеличивается вязкость стали и снимаются внутренние напряжения в ней при сохранении достаточно большой твердости. Он применяется для деталей машин, работающих в условиях трения и динамических нагружений, таких, как лемехи плугов, лапа культиваторов, зубья барабана молотилки, оси тракторных плугов, пружины, рессоры и др.

Низкий отпуск состоит в иагреве закаленной детали до температуры 140. 250 °С и охлаждении с любой скоростью. При таком отпуске почти не уменьшается твердость и вязкость стали, но зато снимаются внутренние закалочные напряжения. После такого отпуска детали нельзя нагружать динамическими нагрузками. Чаще всего его используют для обработки режущего и измерительного инструмента из углеродистых и легированных сталей.

Читайте так же:
Валик малярный для углов

При изготовлении слесарного, кузнечного или измерительного инструмента ручной ковкой кузнецы часто применяют закалку и отпуск с одного нагрева. Такую операцию называют самоотпуском и выполняют следующим образом. Нагретую под закалку поковку охлаждают в воде или масле не полностью, а до температуры несколько выше температуры отпуска, которую можно определить при извлечении поковки из закалочной среды, по цвету побежалости на предварительно обработанной на наждачном круге поверхности поковки. После этого поковку окончательно охлаждают путем погружения ее в воду или масло.

При отсутствии измерительных приборов температуру нагрева поковки определяют по цвету побежалости. Для этого перед нагревом поковки для отпуска на ней, в нужном месте, зачищают небольшой участок наждачной бумагой или другим абразивом. Нагревают поковку и наблюдают за изменением цвета металла по зачищенной поверхности. При этом цвета побежалости будут соответствовать следующим приблизительным температурам нагрева поковки!

Цвет побежалости Температура, °С

Соломенно-желтый (золотистый) . 240

Темно-сииий 295 . 310

Светло-синий . 315 325

Светло-серый . 330 . 350

При более высокой температуре поверхность стали темнеет и остается такой до температуры 600 °С, когда появляются цвета каления (см. гл. 5).

Режимы термообработки сталей необходимо соблюдать очень строго, так как только правильная термообработка позвол яет пол у ч ать детали машин с заданной прочностью, износостойкостью, обрабатываемостью, пластичностью и т. п.

Приближенные режимы нагрева поковок при термообработке можно устанавливать по диаграмме на рис. 8.2. Например, кузнец отковал поковку из углеродистой стали, содержащей 0,5% углерода. Требуется определить по диаграмме температуру нормализации. Для этого на горизонтальной оси находят точку а, соответствующую 0,5% углерода. Из точки а проводят вертикальную линию до пересечения ее в точке б с кривой для нормализации. Из точки б проводят горизонтальную линию влево до пересечения с вертикальной осью диаграммы в точке в. Точка в указывает, что температура нагрева поковки для нормализации приближенно будет равна 880 °С.

Верхние критические точки нагрева сталей находятся на линии Ас3 (SG) и Ас (SK). Поэтому можно сначала определять критические температуры нагрева на линиях Ас3 или AcJ (рис. 8.2), а затем прибавлять к ним указанные выше величины температур и получать требуемые значения температур нагрева сталей для того или другого вида термической обработки.

Следует иметь в виду, что после нагрева стали под закалку их можно охлаждать на воздухе до критических точек охлаждения Ася и Acit а затем погружать в охлаждающую среду. Точки Ars и Агг обозначают температуру ниже температуры на линиях Ас3 и Аси примерно в пределах Ю. 50°С.

Режимы термообработки некоторых конкретных углеродистых и легированных сталей приведены в табл. 8.2.

Следует отметить, что в кузницах чаще используются различные виды отжига и отпуска поковок, как подготавливающие их для последующей обработки резанием.

Для пружин и рессор, как очень ответственных деталей, воспринимающих циклические и динамические нагрузки,

Современные технологии термической обработки металлов

В большинстве случаев для сталей и сплавов, получаемых после их выплавки и последующей первичной обработки давлением – прокатки, выдавливания или ковки – получить необходимые физико-механические свойства и структуру не удаётся. Что и понятно: повышение пластичности, например, способствует снижению суммарных энергозатрат при обработке заготовок, а неравномерная структура стального слитка неизбежна ввиду особенностей ведения большинства металлургических процессов.

Термическая обработка металлов

Но для дальнейшей эксплуатации деталей и узлов оборудования зачастую требуются совсем иные характеристики – прочность, твёрдость, жёсткость и т.д. Именно для этих целей и предназначена термическая обработка металлов.

Сущность процессов термообработки

Задачами различных технологий термической обработки является:

  • Обеспечение наиболее благоприятной микроструктуры сталей и сплавов;
  • Получение нужного уровня твёрдости: либо в тонкой поверхностной (или подповерхностной) зоне, либо по всему поперечному сечению заготовки;
  • Коррекция химического состава в зёрнах макроструктур различных сплавов.

В первом случае необходимо обеспечить максимальную степень однородности свойств металлов, что важно, например, для последующей механической или – особенно – деформирующей их обработки. В результате условия формоизменения заготовки по всем трём координатным осям оказываются одинаковыми, а брак конечной детали исключается.

Термическая обработка металла

Термическая обработка металла

Кроме того, выравнивание микро и макроструктуры для процессов обработки металлов давлением необходимо для того, чтобы повысить степень деформации полуфабрикатов, приближая в итоге форму заготовки к форме готового изделия. Причём за наименьшее количество переходов, и используя минимально необходимое для этого усилие оборудования.

Изменение химического состава в зёрнах микроструктуры, вследствие образования новых соединений в большинстве случаев не только поднимает показатели твёрдости, но и повышает износостойкость деталей, которые должны эксплуатироваться при повышенном трении, температуре или увеличенных против обычного удельных нагрузках.

Закалка-отпуск

В первую группу технологий термообработки различных сплавов, включая сталь, входят отжиг и отпуск. Во вторую — закалка, нормализация, улучшение, старение, обработка холодом. В третью – все виды термохимической обработки.

Отжиг

Суть процессов, протекающих в структуре большинства сплавов, подвергаемых отжигу – обеспечить наиболее равновесную структуру заготовки, в которой или отсутствуют внутренние напряжения, или их уровень достаточно низок, а потому не влияет на последующую обрабатываемость металлов/сплавов.

Печи для отжига производства BOSIO

Печи для отжига производства BOSIO

Исходная структура практически всех сплавов и сталей представляет собой достаточно крупные зёрна, между которыми располагаются включения и примеси, преимущественно сера и фосфор. Это увеличивает хрупкость металла, что может быть важно при формообразовании из слитка (или катанки) изделий сложной конфигурации. Поэтому необходимо снизить размер зерна и придать ему оптимальную форму эллипсоида, при которой механические свойства будут примерно одинаковы по всем трём координатным осям.

Отжиг цветных металлов

С этой целью исходную заготовку необходимо нагреть до температуры на 50…70 0 С выше температуры начала аустенитного превращения. Именно его итогом является образование мелких и хорошо ориентированных зёрен аустенита между зёрнами основных структурных составляющих стали – феррита и цементита. Аустенит образуется из перлита – структуры, имеющей наиболее крупные зёрна, которая способствует повышенной хрупкости любого слитка. Аустенитное превращение для большинства сплавов протекает достаточно медленно, поэтому отжиг – длительная процедура, которая должна продолжаться не менее часа.

Читайте так же:
Доклад о профессии токарь

Отжиг металла

Отжиг металла

Вторая важная задача отжига – снять внутренние напряжения, которые формируются в заготовке при её обработке давлением в холодном состоянии. Дело в том, что любая деформация сопровождается дроблением зёрен исходной структуры сталей и сплавов. В итоге зёрен становится больше, сопротивление деформации возрастает, что не только требует повышенного усилия деформирования, но и становится причиной разрушения полуфабриката, степень деформации которого превысила критический для данного металла показатель.

Соответственно, для реализации первой задачи применяется технология высокотемпературного отжига (для сталей, в зависимости от содержания углерода, она колеблется в пределах 550…750 0 С), а во втором – низкотемпературного отжига (180…220 0 С).

Способы высокотемпературного отжига

Нагрев происходит медленно, с последующей выдержкой изделия при заданной температуре, после чего следует медленное же охлаждение. Для легированных сталей и сплавов такое охлаждение ведут с особо низкой скоростью, в самой печи, где происходил отжиг.

Отпуск

Отпуск по технологии напоминает отжиг, но производится не с заготовкой, а с готовым изделием, а потому преследует иные задачи – снять внутренние напряжения после термической обработки, которая проводилась на повышенную твёрдость детали.

Отпуск металла

Отпуск металла

Самостоятельным процессом термической обработки отпуск не является. В отличие от отжига, отпуск иногда выполняется в несколько приёмов: в большинстве случаев это касается изделий, для производства которых использовались различные виды высоколегированной стали.

Закалка

Закалка заключается в быстром нагреве заготовки до температуры окончания аустенитного превращения (900…1100 0 С – для низкоуглеродистых сталей, 750…850 0 С – для высокоуглеродистых) и последующем быстром охлаждении в специальных закалочных средах. В качестве последних используется вода (для изделий малоответственного назначения) или масло.

Режимы закалки отличаются наибольшим разнообразием. Основным фактором, определяющим эффективность закалки, является интенсивность образования в структуре мартенсита – высокотемпературной составляющей, которая придаёт металлу или сплаву повышенную твёрдость.

Условия образования мартенсита определяются следующими обстоятельствами:

Интервал температур нагрева под закалку углеродистых сталей

  • Марками сталей или сплавов. Интервал температур нагрева под закалку углеродистых сталей
  • Исходной структурой.
  • Требуемой конечной твёрдостью.
  • Необходимостью наличия ряда соединений в микроструктуре, которые образуются лишь при повышенных температурах.

Соответственно для каждой марки стали или сплава разработаны индивидуальные режимы закалки, которые различаются:

    Скоростью нагрева заготовки до необходимых температур (допускаемая погрешность для некоторых видов Режим закалки стали в зависимости от марки

Особенно тщательно ведут закалку сталей и сплавов со сложным составом, включающим несколько легирующих элементов (в частности, кобальта, молибдена). Указанные металлы в процессе образуют по границам зёрен основной структуры интерметаллидные соединения, которые существенно увеличивают твёрдость и прочность сталей (в частности, инструментальных). Форма и концентрация интерметаллидов зависят только от точности соблюдения технологии закалки.

alt=»Присутствие в стали молибдена или вольфрама повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой хрупкости» width=»640″ height=»146″ />Присутствие в стали молибдена или вольфрама повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой хрупкости

Виды закалки определяются оборудованием, на котором она выполняется. Например, для таких изделий, как шестерни, валы, направляющие колонки, где требуется оптимальное сочетание высокой поверхностной твёрдости и относительно вязкой сердцевины, используется поверхностная закалка токами высокой частоты.

Закалка ТВЧ, закалка стали, температура закалки

Закалка ТВЧ, закалка стали, температура закалки

Для этого изделие помещают в индукционную катушку, по которой пропускается высокочастотный (до 15000…25000 Гц) ток. Проникая на ограниченную глубину, этот ток способствует увеличению поверхностной прочности сталей или сплавов. В результате усталостная прочность деталей, которые работают при циклически изменяющихся напряжениях растяжения-сжатия, заметно возрастает.

Более интенсивное изменение твёрдости поверхности детали можно получить, используя для закалки высокоэнергетические источники тепла – искровой или дуговой разряд. Разряды должны возбуждаться в жидкой среде, куда помещают обрабатываемую заготовку или деталь.

Режимы термической обработки углеродистых инструментальных сталей во время закалки и после отпуска

Режимы термической обработки углеродистых инструментальных сталей во время закалки и после отпуска

После закалки в подавляющем большинстве случаев необходим отпуск, иначе чрезмерная конечная твёрдость детали становится причиной повышенной хрупкости при ударных нагрузках.

Улучшение и нормализация

Как виды термообработки, эти процессы схожи с отжигом, хотя и предназначены для иных целей – повышения эксплуатационной долговечности ответственных деталей машин и инструмента.

При нормализации деталь подвергается медленному нагреву, выдерживается при заданной температуре, после чего обязательно охлаждается вместе с печью. В результате структура детали становится более равновесной, а уровень внутренних напряжений понижается.

Закалка стали (график)

Закалка стали (график)

Существенным отличием считается состав атмосферы, печи, в которой выполняются данные операции термической обработки. Она должна быть безокислительной, поскольку интенсивное оксидообразование на поверхности изделия не только ухудшает его товарный вид, но и изменяет размеры. Выгорание углерода, которым также сопровождается термообработка в обычной печи, ухудшает химический состав стали и снижает её прочность.

Уменьшение доступа кислорода к поверхности детали при нормализации выполняют несколькими путями:

  • Нагревом при плановом недостатке кислорода. В этом случае стабильность работы газовых горелок печей для термообработки компенсируют увеличением скорости подачи воздуха в зону горения;
  • Термической обработкой в среде защитных газов. Для ответственных деталей применяются пары лития, аргон или другие благородные газы, в остальных случаях – двуокись углерода;
  • Нанесением защитных обмазок на поверхность изделия, подлежащего нормализации.

После нормализации деталь охлаждают на спокойном воздухе, не допуская её обдув: это может вызвать неоднородную, «пятнистую» микроструктуру изделия.

Нормализация металла

Нормализация металла

Улучшение — операция термообработки, в результате которой повышается механическая обрабатываемость сталей и сплавов, снижается уровень остаточных напряжений в них. Это сопровождается некоторым уменьшением твёрдости.

Криогенная обработка

Мартенситная составляющая в структуре большинства сталей и сплавов может появиться не только при повышенной, но и при пониженной температуре. Технология обработки холодом выгодно отличается от традиционных технологий термической обработки следующим:

Криогенная обработка

    В результате криогенной обработки количество остаточного аустенита в сталях снижается. Это стабилизирует размеры деталей (что особо важно для высокоточного инструмента), повышает Криогенная обработка

Особый вид термообработки представляют процессы химико-термической обработки. Их задачей является формирование в поверхностной микроструктуре карбидов и нитридов – соединений, существенно увеличивающих микротвёрдость деталей, и создающих в них остаточные напряжения сжатия. Такие изделия показывают особо высокую стойкость при знакопеременных нагрузках.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector