Tehnik-ast.ru

Электро Техник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гальваническое покрытие: свойства, разновидности, альтернативы

Гальваническое покрытие: свойства, разновидности, альтернативы

Гальванизация – это электрохимический метод нанесения металлической пленки, которая препятствует коррозии и окислению поверхностей. Она придает им эстетичный внешний вид, износостойкость и увеличивает твердость.

Данный метод обработки улучшает термостойкость металлов, поэтому его широко применяют в таких отраслях промышленности, в которых присутствуют высокотемпературные процессы.

Как появилось гальваническое покрытие?

Открытием гальванического покрытия мир обязан русскому физику Борису Якоби. В 1836 году в ходе экспериментов он пропускал металлы через соляные и водные растворы, которые находились под воздействием электрического тока.

При прохождении через солевые растворы металлы разделялись на разнозарядные ионы. Положительные оседали на катоде, а отрицательные – на аноде.

Технология гальванизации

Гальванические покрытия требовательны к подготовке поверхностей. Перед началом работ требуется провести тщательную очистку и обезжиривание деталей.

Очиститель металла MODENGY

Для металлических поверхностей рекомендуется использовать органические растворители, которые не вызывают коррозии, например Очиститель металла MODENGY

Он эффективно удаляет нефтепродукты, силиконовые масла, консервационные составы, адсорбированные пленки, газы, влагу и другие виды загрязнений. Испаряется быстро и без остатка.

Гальваническое покрытие выделяет все сколы, царапины и раковины поверхностей, поэтому обрабатываемое изделие должна быть идеально подготовленным.

Далее рассмотрим технологию гальванизации.

На деталь, погруженную в емкость с электролитом, подается отрицательный заряд, в результате чего она становится катодом. Отдельно стоящая металлическая пластина получает положительный заряд и берет на себя функцию анода.

Именно эта пластина служит для образования покрытия. При замыкании электрической сети металл с нее растворяется в электролите и направляется к катоду, где образует равномерную тонкую пленку.

Данный способ гальванизации называется анодным. Благодаря ему при возникновении очагов коррозии разрушается именно гальваническая изоляция, а защищаемый металл в течение длительного времени остается нетронутым.

Существует еще один метод гальванизации – катодное напыление. Он применяется гораздо реже. При нарушении целостности такого покрытия возрастает интенсивность разрушения металла под ним. Этому способствует сама технология нанесения.

Электролит – это проводящий раствор, благодаря которому металлы попадают на катод с анода. Размер емкостей для этой жидкости может быть разным и зависит от производственных задач.

Ванны для гальванизации

Детали больших размеров находятся в объемных ваннах в подвешенном состоянии. На более мелкие изделия гальваническое покрытие наносится в барабанных емкостях, где отрицательный заряд подается на барабан, который вращается в электролите. Для обработки деталей очень маленького размера (метизы, крепежные элементы) используются колокольные наливные ванны. В процессе работы они вращаются с низкой скоростью, в результате чего детали равномерно покрываются защитным покрытием.

Большое значение имеет плотность тока, который проходит через электролит. Он влияет на структуру формируемого осадка. Данная величина измеряется отношением силы тока к единице поверхности обрабатываемой детали.

При слишком большой величине плотности порошковых отложений много, а при низкой – его вообще не образуется. Это сказывается на качестве конечного покрытия. Именно поэтому процесс гальванизации требует постоянного контроля.

Совместимость металлов

Совместимость материалов при гальванизации очень важна. Все металлы в соединениях корродируют. В некоторых случаях процесс протекает замедленно. Однако существуют материалы, которые соединять вместе крайне не рекомендуется.

С определенными трудностями связана работа с алюминием и его сплавами. Это связано с тем, что на поверхностях этих материалов присутствует окисная пленка, которая затрудняет процесс гальванизации.

Для алюминия можно использовать следующие сочетания материалов: никель-хром, медь-никель-хром, медь-олово, свинец-олово. Допускается также цинкование и латунирование алюминия.

Области применения гальванических покрытий

Прочность и износостойкость гальванических покрытий позволяет использовать данный вид защиты:

В радиотехнической промышленности

В электронной промышленности

Альтернатива гальваническому покрытию

Повысить прочность и антикоррозионные характеристики металлов можно не только с помощью гальванизации, но и другими методами: закалкой, рекристаллизацией, чеканкой, обкатыванием, газопламенным напылением, наплавкой и т.д.

Одним из наиболее простых и эффективных способов повышения износостойкости металлических изделий, предотвращения их коррозии и защиты от агрессивных внешних факторов является применение специальных твердосмазочных покрытий. Внешне они напоминают лакокрасочные материалы, только вместо пигмента содержат частицы твердых смазочных веществ.

Такие покрытия создают на поверхностях тонкую сухую пленку, которая обладает высокой несущей способностью и низким коэффициентом трения. Это особенно важно для металлических деталей, которые являются частью подвижных механизмов, работают при очень высоких нагрузках, давлениях и температурах.

Схема твердосмазочного покрытия на поверхности детали

Эти материалы формируют на поверхностях прочный композиционный слой. Он представляет собой полимерную матрицу с равномерно распределенными в ней частицами твердых смазочных веществ. Они заполняют и сглаживают микронеровности поверхностей, тем самым увеличивая их опорную площадь и несущую способность.

Покрытия MODENGY обладают высоким сопротивлением сжатию и малым сопротивлением сдвигу, поэтому их коэффициент трения достигает значений в несколько сотых при контактных давлениях, соизмеримых с пределом текучести материала основы.

Многие из материалов MODENGY доказали свою работоспособность в условиях радиации и вакуума. Их несущая способность достигает 2500 МПа, диапазон рабочих температур составляет от -200 до +560 °C. Благодаря технологии сухой смазки, которую они реализуют, покрытия эффективно работают в запыленных условиях.

Жидкие покрытия наносятся стандартными методами окрашивания: распылением, окунанием, центрифугированием. Составы в аэрозольной фасовке не требуют какого-либо оборудования. Краткую видеоинструкцию по их нанесению смотрите на примере работы с покрытием MODENGY Для деталей ДВС .

Виды гальванических покрытий

В зависимости от назначения гальванические покрытия подразделяются на следующие виды:

Защитные: служат для изоляции металлических изделий от механических повреждений и воздействия агрессивных сред

Защитно-декоративные: предназначены для защиты деталей от агрессивных и разрушающих внешних факторов, а также для придания им эстетичного внешнего вида

Специальные: служат для улучшения определенных характеристик поверхностей, например, повышения износостойкости и твердости, электроизоляционных, магнитных свойств

В некоторых случаях гальванизация применяется для восстановлении изначального вида изделий после их длительной эксплуатации.

Гальваническое покрытие позволяет создавать точные копии деталей, которые обладают даже очень высокой сложностью рельефа. Данный процесс называется гальванопластикой.

Меднение

В качестве покрытия используется медный купорос. Такая обработка способствует повышению прочности металлических изделий и повышению их токопроводящих свойств. Металлы с медным покрытием используются для производства электропроводников.

Внешний вид крепежа с медным гальваническим покрытием

Хромирование

Данная процедура повышает прочностные характеристики металлов, а также их сопротивляемость различным агрессивным воздействиям. Помимо этого, она улучшает внешней вид деталей и восстанавливает поврежденные элементы.

Внешний вид хромированных деталей

В зависимости от технологии выполнения хромированное покрытие может обладать различными свойствами и параметрами. Например, серое матовое увеличивает твердость металла, блестящее повышает его износостойкость, молочное пластичное придает эстетичный внешний вид и усиливает стойкость к коррозии.

Читайте так же:
Как закалить цепь на бензопилу

Цинкование

Самая популярная операция гальванизации. Тонкий слой цинка придает металлам блеск и предотвращает образование коррозии. Цинкование особенно популярно в строительной и автомобильной индустрии. Цинк используется для обработки трубопрокатных изделий, емкостей, опорных и кровельных конструкций, кузовных деталей автомобилей.

Процесс цинкования

Железнение

Используется для усиления прочностных характеристик легкоизнашиваемых деталей, например, из меди. Такое покрытие практически не подвержено воздействию коррозии.

Никелирование

Данный метод обработки является оптимальным для придания металлам устойчивости к воздействиям окружающей среды. Слой никеля надежно защищает изделия от коррозии, возникающей вследствие загрязнения щелочами, кислотами, солями. Никелированные детали отличаются очень высокой стойкостью к истиранию и механическим повреждениям.

Внешний вид деталей с никельным покрытием

Латунирование

Используется для защиты металлов от воздействия коррозии. Кроме того, слой латуни обеспечивает лучшую адгезию металлических деталей с резиной.

Покрытие латунью

Серебрение и золочение

Эти операции применяются в ювелирном деле, радиоэлектронной и электротехнической отраслях. Серебро и золото придают поверхностям презентабельный внешний вид, высокие отражающие свойства, предотвращают коррозию, улучшают токопроводящие свойства, повышают твердость и защищают от агрессивных внешних факторов.

Внешний вид поверхности после серебрения

Родирование

Слой родия увеличивает сопротивляемость деталей воздействию химически агрессивных сред, а также придает им дополнительную механическую стойкость. Родирование предотвращает окисление, потускнение изделий из серебра.

Покрытие оловом

Олово увеличивает прочность и твердость металлических деталей. Гальванизация этим материалом применяется для алюминия, цинка, стали и меди.

Покрытие оловом

Присоединяйтесь

© 2004 – 2021 ООО «АТФ». Все авторские права защищены. ООО «АТФ» является зарегистрированной торговой маркой.

Никелирование металлических поверхностей

НикелированиеЧто такое никелирование это нанесение слоя никеля металла с целью предотвратить коррозию железа, в этом случае он применяется как подслой при хромировании, в химической промышленности от действия щелочных растворов и т.д.

Процесс никелирования в зависимости от применения может происходить в несколько этапов: удаление посторонних материалов (ржавчина, масло и т.д.), электрохимическое осаждение никеля на катоде.

В лабораторных условиях процесс осаждения производят с помощью электролиза.

Никелирование широко применяется в гальванотехнике при защитно-декоративной отделке изделий машиностроения, приборостроения, а также предметов широкого потребления. Подобное распространение никеля объясняется тем, что хотя никель и относится к числу электроотрицательных металлов (φ°Ni/Ni 2+ = —0,23 в), однако в обычных атмосферных условиях, благодаря пассивированию, он длительное время сохраняет свой блеск. В гальванической паре никель—железо он является катодным покрытием и, следовательно, может защищать железо лишь при условии отсутствия оголенных участков и пор. Поэтому необходимо получать никелевые покрытия с минимальной пористостью. Это условие может быть соблюдено при правильном ведении процесса никелирования и определенной толщине слоя никеля.

Для никелевого покрытия без подслоя на стали она колеблется в пределах 12—36 мк в зависимости от условий эксплуатации. Для уменьшения пористости на стали осаждают сначала слой меди, а затем уже слой никеля. В некоторых случаях наносят трехслойное покрытие никель — медь — никель, не требующее применения медного цианистого электролита. В этих условиях, а также при покрытии деталей из меди и сплавов меди никелевые покрытия наносят меньшей толщины. Суммарная толщина никеля и меди при этом не должна быть меньше положенной толщины никеля. Толщина же наружного слоя никеля должна составлять не менее 50% от суммарной толщины. Никелевое покрытие хорошо полируется и может быть легко доведено до зеркального блеска.

Никелирование применяют также для защиты химической аппаратуры от действия щелочных растворов, в полиграфическом производстве для повышения поверхностной твердости и сопротивления износу гартовых стереотипов и клише, в гальванопластике, а также в качестве подслоя при хромировании. Никелирование можно осуществить как электрохимическим, так и химическим методом.

По химическому методу восстановление сульфата никеля до металла происходит с помощью гипофосфита натрия:

Одновременно происходит также выделение фосфора, образующего с никелем соединение с содержанием от 4 до 10%Р. Основным преимуществом химического никелирования является возможность осаждения никеля равномерным слоем на изделиях любой конфигурации, в том числе и на внутренних стенках полых изде лий. Однако этот метод дорог и осаждение никеля в основном производят электрохимически.

В качестве электролитов для никелирования можно применять сернокислые, хлористые, борфтористоводородные, сульфаминовые и другие.

Хлористый электролит дает менее светлые осадки, чем сернокислый, поэтому последний более предпочтителен. Сульфамат никеля обладает высокой растворимостью, и следовательно позволяет работать с большей плотностью тока, но более дефицитен.

При электрохимическом осаждении никеля на катоде протекает два основных процесса:

Ni 2+ + 2е → Ni

В результате разряда ионов водорода концентрация их в прикатодном слое может снизиться до значений, отвечающих образованию гидратов. Основные соли никеля существенно влияют на процесс электроосаждения никеля, его структуру и свойства.

Никель осаждается с заметной химической поляризацией.

Сернокислые никелевые электролиты

Основным компонентом никелевых электролитов является NiSO4 • 7Н2O. Для повышения электропроводности вводят сульфаты натрия, магния и аммония.

Важным компонентом кислых электролитов является, как уже отмечалось, борная кислота, препятствующая выпадению основных соединений никеля на поверхности катода. По-видимому, влияние борной кислоты не исчерпывается только буферным действием. Борная кислота образует с Ni(ОН)2 сложные комплексы типа. Ni(OH )2 • 2Н3ВО3, которые снижают скорость образования гидроокиси никеля в прикатодной зоне. Области получения качественных осадков никеля при различных рН приведены на рис. 2.

Однако следует иметь в виду, что электролиты с малой величиной рН, допуская более высокие плотности тока и, следовательно, интенсификацию процесса, чаще вызывают точечную пористость (питтинг) на осадках никеля, чем электролиты с высоким значением рН. Кроме того, имеет место сильное растворение анодов, что приводит к необходимости более частой корректировки электролита из-за неравенства катодного и анодного выходов по току (катодный выход по току значительно ниже анодного). Наконец, при использовании электролитов с низким рН блестящие никелевые покрытия можно получать только при низких температурах.

Рис. 2. Рабочие интервалы никелевых электролитов при различной кислотности. (Области выделения доброкачественных покрытий лежат между линиями с одинаковыми значениями рН.)

Никелевые аноды склонны к пассивированию. Для предупреждения пассивирования анодов в никелевый электролит вводят активаторы —ионы хлора в виде NaCl, КСl, NiCl2. Плотность тока, вызывающая пассивирование анодов, зависит от соотношения кон центраций ионов SO 2- 4 и Сl — в электролите. При повышенных плотностях тока относительное содержание ионов Сl — необходимо увеличивать. Нормально работающий анод имеет серый цвет и шероховатую поверхность; при полной пассивности на аноде происходит выделение кислорода совместно с хлором, а поверхность становится более гладкой и имеет желто-коричневый цвет (окись и гидроокись никеля).

Читайте так же:
Как разрезать зеркало в домашних условиях видео

Наиболее легко растворяются литые аноды, но дают много шлама; катаные растворяются хуже, но равномернее. Аноды из электролитического никеля также образуют значительные количества шлама. Для предотвращения попадания шлама в электролит никелевые аноды помещают в чехлы из ткани (льняное полотно, стеклянная ткань, найлон).

Рассеивающая способность никелевых электролитов значительно выше, чем рассеивающая способность медных и цинковых кислых электролитов, но уступает рассеивающей способности цианистых электролитов.

Плотность тока 0,5—1,0 а/дм 2 . Температура электролита 18— 25° С. Выход по току 95—97%. При подогревании до 40° С и пере мешивании плотность тока может быть повышена до 2 ,5 а/дм 2 ; рН = 5,5.

Для скорого наращивания никеля рекомендуется повышение концентрации соли никеля, уменьшение концентрации или даже полное изъятие проводящих солей и замена щелочных хлоридов хлоридом никеля. Помимо того, снижается величина рН и повышается температура. Катодная плотность тока при этом может быть поднята до 10 а /дм 2 .

В настоящее время разработаны составы электролитов, которые позволяют получать непосредственно блестящие никелевые покрытия. Это позволяет сократить затраты, связанные с механической полировкой.

Для блестящего никелирования в электролит вводят добавку натриевой соли 2,6 (2,7)-дисульфонафталиновой кислоты. Электролит с дисульфонафталиновой добавкой не исключает полностью полировки; от 30 до 50% деталей обычно требуют еще доглянцовки. Поэтому наряду с дисульфонафталиновокислым натрием вводят добавки формалина и сахарина. Еще больший эффект получается от добавки пропинола.

В последние годы получили применение электролиты с добавками паратолуолсульфамида и кумарина, а также сахарина и пропинола или бутиндиола; в этих электролитах осадки получаются с высоким зеркальным блеском и практически не требуют дополнительной глянцовки, при этом повышается чистота покрываемой поверхности, так как этот электролит обладает выравнивающими свойствами. Процесс ведут при непрерывной фильтрации и перемешивании.

Никелевый электролит очень чувствителен к примесям. Так, наличие железа в электролите приводит к отслаиванию и растрескиванию покрытия. Хрупкость никелевого покрытия может появиться также при наличии в растворе некоторых органических соединений. Примесь меди и цинка вызывает образование пятнистых, полосчатых темно-серых и черных осадков никеля. Допустимая концентрация металлов-примесей в электролите следующая: 0,1 г /л Fe, 0,02 г/л Сb, 0,01 г/л Zn и 0,007 г/л Рb.

Загрязнение электролита органическими соединениями, наличие в электролите взвешенных частиц, а также отклонения от режима электролиза (по температуре и рН) могут привести к образованию точечной пористости. Точечная пористость является следствием прилипания к покрываемой поверхности пузырьков водорода.

Которое экранируют поверхность основы и не дают осаждаться в этом месте никелю. При образовании «питтинга» следует произ вести очистку раствора от железа и органических примесей и отфильтровать электролит. Рекомендуется также добавлять перекись водорода в количестве 1 см 3 (10 %-ный раствор) на 1 л электролита. «Питтинг» может быть удален при перемешивании электролита, а также путем изменения ре-жима электролиза. В последнее время в электролиты стали вводить

С пециальные антипиттинговые добавки (например, моющее средство). На изделиях, покрытых никелем, иногда наблюдается расслоение по крытия (никель от никеля). Это может происходить, если процесс электролиза кратковременно прервался, и поверхность никеля успела запассивироваться.

Специфические трудности возникают также при осаждении никеля на алюминий и его сплавы (наличие окисной пленки, электроотрицательный потенциал). Для обеспечения прочного сцепления металлов используется цинкатная обработка с последующим меднением .

Другие электролиты для никелирования

В настоящее время промышленное применение получили сульфаминовые и некоторые другие электролиты. Сульфаминовый электролит применяют за рубежом. Он позволяет вести процесс на высокоинтенсивном режиме.

Для приготовления сульфамата никеля в сульфаминовую кислоту вводят карбонат никеля:

при содержании в электролизе до 600 г/л сульфамата никеля плотность тока может быть доведена до 40 а/дм 2 .

Некоторые детали приборов (оптических и других) требуют от покрытия значительной коррозионной устойчивости в сочетании с малой отражательной способностью. Этим условиям удовлетворяют покрытий черным никелем, которые могут быть получены из электролита с добавками сульфата цинка и роданида аммония. Анализ осадка черного никеля показывает, что он содержит никель, цинк, серу, водород и кислород. Предполагается, что осадок состоит из свободных металлов — никеля и цинка, их сульфидов и гидроокисей.

Структура и механические свойства электролитического никеля

Структура и механические свойства никелевых осадков в сильной степени зависят от условий электролиза.

Для никеля характерно игольчатое строение кристаллов, расположенных своими длинными осями перпендикулярно плоскости катода . После отжига осадки имеют равноосные зерна средних размеров.

Механические характеристики никелевого осадка сильно зависят от рН электролита.

По данным А. Л. Ротиняна и Ю. П. Юсовой, микротвердость, предел прочности, относительное удлинение и другие свойства резко меняются при значении рН >5. Это объясняется образованием в катодном слое гидроокиси никеля, которая в сильной степени влияет на процесс кристаллизации, а следовательно, и на механические свойства осадков. Твердость никеля, полученного из электролитов без органических добавок, обычно колеблется в пределах 300—400 кга/мм 2 . При введении добавок для повышения блеска микротвердость возрастает до 600-700 кгс/мм 2 . Прочность на разрыв соответственно изменяется 60 до 175 кгс/мм 2.

Для никеля характерны высокие внутренние напряжения растяжения, достигающие 25—30 кгс/мм 2 .

Как уже отмечалось, защитное действие никелевых покрытий на стали снижается при наличии оголенных участков и пор. Пористость никелевых покрытий зависит не только от толщины слоя, но и от условий электроосаждения. По данным А. Л. Ротиняна, минимальная пористость никелевых покрытий достигается в сернокислом электролите без добавок проводящих солей и при повышенной температуре (45—50°С).

Чем отличаются смесители хром и никель. Никелирование, хромирование, воронение и т.п. в домашних условиях. От синего до желто-зеленого цвета

Кристалл хрома имеет объемно-центрированную кубическую решетку, а=0,28845 нм. Выше температуры в 1830 С можно получить модификацию с гранецентрированной кубической решеткой.

При температуре в +38 С фиксируется фазовый переход второго рода с увеличением объема. При этом кристаллическая решетка вещества не изменяется, а вот его магнитные свойства становятся совершенно другими. До этой температуры – точки Нееля, хром проявляет свойства антиферромагнетика, то есть, является веществом, которое намагнитить практически невозможно. Выше точки Нееля металл становится типичным парамагнетиком, то есть, проявляет магнитные свойства в присутствии магнитного поля.

Читайте так же:
Латунь и его свойства

Свойства и характеристики

В нормальных условиях металл довольно инертен – и благодаря оксидной пленке и просто по природе своей. Однако при повышении температуры вступает в реакцию и с простыми веществами, и с кислотами, и с основаниями. Его соединения очень разнообразны и применяются очень широко. Физические характеристики металла, как упоминалось, сильно зависят от количества примесей. На практике дело имеют с хромом с чистотой до 99,5%. таковы:

  • температура плавления
    – 1907 С. Эта величина служит границей между тугоплавкими и обычными веществами;
  • температура кипения
    – 2671 С;
  • твердость по шкале Мооса
    – 5;
  • электропроводность
    – 9 · 106 1/(Ом м). По этому показателю хром уступает только серебру, и золоту;
  • удельное сопротивление
    –127 (Ом мм2)/м;
  • теплопроводность
    вещества составляет 93,7 Вт/(м K);
  • удельная теплоемкость
    –45 Дж/(г K).

Теплофизические характеристики вещества несколько аномальны. В точке Нееля, где изменяется объем металла, коэффициент его теплового расширения резко увеличивается и продолжает расти с увлечением температуры. Также аномально ведет себя и теплопроводность – падает в точке Нееля и уменьшается при нагреве.

Элемент относится к числу необходимых: в человеческом организме ионы хрома являются участниками углеводного обмена и процесса регулировки выделения инсулина. Суточная доза составляет 50–200 мкг.

Хром нетоксичен, хотя в виде металлического порошка может вызвать раздражение слизистой. Трехвалентные его соединения тоже относительно безопасны и даже применяются в пищевой и спортивной промышленности. А вот шестивалентные для человека являются ядом, вызывают тяжелые поражения дыхательных путей и ЖКТ.

О производстве и цене на металл хром за кг сегодня мы поговорим далее.

В этом видеоролике будет показано, является ли покрытие хромовым:

Виды никелевых покрытий

Нанесение никеля на металлические поверхности может быть химическим или гальваническим. Использование электрического тока позволяет значительно увеличить производительность. Никелированию поддаются практически все виды стали и металлы, относящиеся к цветным.

На сегодняшний день возможно получение различных видов гальванических покрытий из никеля:

  • матовый слой обладает высокими антикоррозийными свойствами. Такое покрытие используют для обработки внутренних деталей машин и агрегатов, когда внешний вид детали особого значения не имеет. Пластичные матовый никель применяется в гальванопластике, а также в качестве промежуточного слоя при металлизации пластиковых материалов;
  • блестящий слой обладает меньшими защитными свойствами, но он имеет более привлекательный внешний вид. После такой обработки отпадает необходимость в полировке деталей;
  • полуматовое никелевое покрытие.

Чтобы получить желаемое покрытие, необходимо использовать определенный вид электролита. Для придания еще большего блеска, в раствор вводят специальные добавки – блескообразователи. Оказывает влияние на протекание процесса и режим тока.

Большое распространение на сегодняшний день получило комбинированное никелевое покрытие, основу которого составляет матовый никель, а верхний слой является блестящим. Такое покрытие обладает улучшенными характеристиками и более длительным сроком службы.

Обработка металлов никелем позволяет не только качественно защитить их от коррозии, но и придать привлекательный блеск, который получает поверхность, если применяется гальваника такого рода. Поэтому гальваническое никелирование на данное время является весьма востребованным и самым распространенным методом защиты.

Основными материалами, поддающимися такой обработке, являются:

  • сталь;
  • медь;
  • цинк;
  • алюминий;

молибден, марганец, вольфрам, хотя и могут гальванироваться, на практике к ним эта технология применяется очень редко.

Производство

В большом количестве разных минералов – часто сопровождает и . Однако его содержание недостаточное, чтобы иметь промышленное значение. Перспективными являются лишь породы, включающие не менее 40% элемента, поэтому пригодных для добычи минералов немного, в основном это хромовый железняк или хромит.

Добывают минерал шахтным и карьерным методом в зависимости от глубины залегания.

А так как руда изначально содержит большую долю металла, то практически никогда не обогащается, что, соответственно, упрощает и удешевляет процесс производства.

Для легирования стали используется около 70% добытого металла. Причем применяют его зачастую не в чистом виде, а в виде феррохрома. Последний можно получить прямо в шахтной электропечи или доменной – так получают углеродистый феррохром. Если требуется соединение с низким содержанием углерода, прибегают к алюминотермическому методу.

  • Этим способом получают и чистый хром, и феррохром. Для этого в плавильную шахту загружают шихту, включающую хромистый железняк, оксид хрома, натриевую селитру и . Первую порцию – запальная смесь, поджигают, а остальную часть шихты загружают в расплав. В конце добавляют флюс – известь, чтоб облегчить извлечение хрома. Плавка занимает около 20 минут. После некоторого охлаждения шахту наклоняют, выпускают шлак, снова возвращают в исходное положение и вновь наклоняют, теперь уже в изложницу выводится и хром, и шлак. После охлаждения полученный блок разделяют.
  • Применяют и другой метод – металлотермической плавки. Проводится она в электропечи в поворачивающейся шахте. Шихту здесь разделяют на 3 части, каждая отличается составом. Этот метод позволяет извлечь большее количество хрома, но, главное – сокращает расход .
  • Если же требуется получить химически чистый металл, прибегают к лабораторному методу: высаживают кристаллы путем электролиза растворов хроматов.

Стоимость металла хром за 1 кг заметно колеблется, поскольку зависит от объема выпускаемого металлопроката – главного потребителя элемента. В январе 2020 года 1 тонна металла оценивалась в 7655 $.

Химическое никелирование

Этот процесс был в свое время одним из главных в технической специальной литературе, и казалось, что он создает сильную конкуренцию для традиционного электролитического никелирования. В настоящее время его оценивают более спокойно и применяют, когда для этого есть техническое и материальное обеспечение.

Основным преимуществом никелевых покрытий, нанесенных химическим путем, является однородная толщина независимо от формы изделия. Это характерно для всех процессов осаждения металла без применения тока.

Особенностью химического никелирования является непрерывное осаждение слоя, что создает возможность образования покрытий любой толщины.

Ванны для химического никелирования состоят из соли никеля, гипофосфита натрия и добавок. Основой являются соли никеля и гипофосфит натрия.

Существуют две разновидности ванн для химического никелирования — кислая и щелочная. В качестве солей никеля, в основном, применяют сульфат или хлорид никеля относительно небольшой (

5 г/л) концентрации. Содержание гипофосфита достигает 10—30 г/л. Добавки вводятся в виде комплексообразующих соединений, ускоряющих осаждение никеля, и стабилизаторов, препятствующих разложению электролита.

Читайте так же:
Какое отверстие сверлить под дюбель 8 мм

В качестве комплексообразующих соединений в специальной литературе упоминаются гликолевая, молочная, лимонная и аминоуксусная кислоты. Ускоряющими являются янтарная, малоновая, пропионовая, масляная, валериановая и другие кислоты. Для стабилизации служат в основном соединения свинца, тиосульфат, тиомочевина и т.д.

Ниже приведены примеры двух ванн для химического никелирования, г/л:

Готовят ванну 1 следующим образом: в дистиллированной воде, нагретой до температуры 60 °С, сначала растворяют ацетат натрия, затем сульфат никеля и добавляют молочную кислоту, предварительно нейтрализованную едким натром до рН = 3,5—4,0. Нагрев ванну до 85 °С, добавляют гипофосфит натрия. После этого можно приступить к никелированию.

Концентрация тиомочевины очень мала и в условиях мастерской нет возможности взвешивания с точностью до долей грамма. Так как избыток тиомочевины может привести к полной задержке процесса никелирования, лучше полностью отказаться от этого стабилизатора и воспользоваться ванной без тиомочевины.

Ванна 2 щелочная. В дистиллированной воде, нагретой до 60 °С, растворяют цитрат натрия, хлориды аммония и никеля, добавляют порциями при постоянном перемешивании раствор аммиака с целью достижения рН = 8—9. При этом происходит заметное изменение цвета раствора с зеленоватого на голубой. После подогрева до 80 °С добавляют гипофосфит и ванна готова к эксплуатации.

Приведенная информация очень общая и мало отражает практическую сторону никелирования.

При менее 80 °С эффективность ванны очень низка. При 90 °С получают в течение 1 ч слой никеля толщиной 10—20 мкм. При дальнейшем повышении температуры, например, до 95°С получают более толстые слои, но стабильность ванны снижается. В определенный момент может наступить внезапное разложение ванны, что сопровождается появлением черного порошка на дне и стенках ванны. Такая ванна непригодна для дальнейшего использования.

Серьезной проблемой является выбор соответствующих рабочих емкостей . В промышленных условиях применяют сложные установки из коррозионностойкой стали, тогда как для никелирования в малом объеме в основном служат стеклянные, фарфоровые или эмалированные емкости.

Наилучшим способом нагрева малых и средних емкостей является водяная рубашка. Опустим 5 л стеклянный сосуд в эмалированный 10 л бак с водой, мы можем получить водяную рубашку, пригодную для газо- или электронагрева ее до температуры кипения. В стеклянном сосуде можно достичь температуры 83—85 °С, достаточной для проведения процесса.

Высокая температура и сильное газовыделение на поверхности изделий фиксируется обслуживающим персоналом по сильному неприятному запаху. Очевидно, что вся установка должна находиться под вытяжкой.

Как видно, вся процедура непроста, вследствие чего применение химического никелирования ограничено теми случаями, когда неприменимы электролитические методы. Например, металлические сильфоны в виде цилиндрической гармошки, применяемые для измерения давления при пневморегулировке, невозможно никелировать электролитически из-за сложной геометрической формы. Химическое никелирование является прекрасным решением этой проблемы.

Стальные изделия можно никелировать химически без затруднений. На меди и латуни осаждение никеля начинается после кратковременного контакта с менее благородным металлом, например, железом или алюминием. Для никелирования алюминиевых сплавов обычно применяют щелочные ванны (например ванну 2).

На стенках и дне сосуда, применяемого для химического никелирования, могут оседать мелкие частички никеля, в особенности, если поверхность сосуда не очень гладка, имеет царапины. Перед дальнейшим использованием такого сосуда необходимо устранить осевшие частички никеля, растворяя их в азотной кислоте.

Применение

Категории

Итак, . Основной потребитель хрома – черная металлургия. Связано это со способностью металла передавать такие свои свойства, как стойкость к коррозии и твердость своим сплавам. Причем влияние он оказывает при добавлении в очень небольших количествах.

Все сплавы хрома и железа разделяют на 2 категории:

  • низколегированные
    – с долей хрома до 1,6%. В этом случае хром добавляет стали прочности и твердости. Если у обычной стали предел прочности составит 400–580 МПа, то та же марка стали с добавкой 1% вещества продемонстрирует предел равный 1000 МПа;
  • высоколегированные
    – содержат более 12% хрома. Здесь металл обеспечивает сплаву такую же стойкость к коррозии, какой обладает сам. Все нержавеющие стали называют хромовыми, поскольку именно этот элемент обеспечивает это качество.

Низколегированные стали относятся к конструкционным: из них изготавливают многочисленные детали машин – валы, зубчатые колеса, толкатели и так далее. Сфера использования нержавеющей стали огромна: металлические части турбин, корпуса корабля и подводных лодок, камеры сгорания, крепеж любого рода, трубы, швеллеры, уголки, листовая сталь и так далее.

Кроме того, хром увеличивает стойкость сплава к температуре: при содержании вещества от 30 до 66%, изделия из жаропрочной стали может выполнять свои функции при нагреве до 1200 С. Это материал для клапанов поршневых двигателей, для крепежа, для деталей турбин и прочего.

Если 70% хрома уходит на нужды металлургии, то остальные почти 30% используются для хромирования. Суть процесса сводится к нанесению на поверхность предмета из металла тонкого слоя хрома. Используются для этого самые разные методы, многие доступны домашним мастерам.

Хромирование

Хромирование можно разделить на 2 категории:

  • функциональное
    – его целью является предупредить коррозию изделия. Толщина слоя здесь больше, так что процесс хромирования занимает больше времени – порой до 24 часов. Кроме того, что хромовый слой предупредит ржавление, он заметно увеличивает износостойкость детали;
  • декоративное
    – хром создает зеркально-блестящую поверхность. Автолюбители и мотогонщики редко когда отказываются от возможности украсить свою машину хромированными деталями. Слой декоративности покрытия намного тоньше – до 0,0005 мм.

Хромирование активно используется в современном строительстве и при изготовлении мебели. Фурнитура с зеркальным покрытием, аксессуары ванной и кухни, кухонная утварь, детали мебели – изделия с хромовым покрытием на редкость популярны. А так как благодаря современным методом хромирования, покрытие можно создать буквально на любом предмете, появились и несколько нетипичные методы применения. Так, например, хромированную сантехнику к тривиальным решениям отнести нельзя.

Хром – металл с очень необычными свойствами, причем его качества востребованы в промышленности. В большинстве своем интерес представляют его сплавы и соединения, что лишь повышает значение металла для народного хозяйства.

Хромируем детали в домашних условиях: технология и необходимое оборудование

Процесс этот несложен. Для создания тонкой хромированной пленки на любых видах металлических, деревянных или даже пластиковых изделий понадобится лишь электролит, емкость подходящего размера и источник электрического тока. Плюс, так как свободный шестивалентный хром является канцерогеном, подготовить следует респиратор, резиновые фартук и перчатки.

Читайте так же:
Какую электробритву лучше выбрать

Технология процесса

Электролитами называют вещества, способные под воздействием электротока отдавать ионы – заряженные частицы. Именно на этом основан принцип гальваники. В нашем случае в качестве электролита будет использоваться хромовый ангидрид. Выделяемые частички, которые будут осаждаться на обрабатываемом изделии, образуя пленку – молекулы хрома.

Чтобы захромировать деталь в домашних условиях, ее необходимо погрузить в ванну с раствором и подсоединить к минусовому проводу. Плюсовой анод опускают в электролит. Под действием силы тока молекулы в электролите начнут двигаться. Положительно заряженные к минусу (катоду), отрицательные – к плюсу. Причем часть молекул образуют пленку, а часть проникнет в верхний слой, в результате чего хром прочно закрепится на поверхности. Этим гальваника существенно отличается от обычного окрашивания.

Подобным способом производится не только хромирование, но и никелирование, покрытие изделий медью, цинком. Принцип обработки в любом случае будет одинаков. Толщина напыления будет зависеть от силы тока, температуры нагрева, времени обработки, вида металла.

В домашних условиях реально провести и химическое хромирование. Специального оборудования тут не требуется. Образование металлической пленки на поверхности в этом случае происходит за счет химических реакций, реагентом в которых служит гипофосфит натрия. Но подобное покрытие менее прочно – его используют лишь в декоративных целях.

Требуемое оборудование

Гальваника (хромирование) в домашних условиях возможна при наличии следующего вида оборудования:

  • блока питания: на выходе он должен показывать 1А и оснащаться регулятором напряжения; для небольших объемов работ достаточно выпрямителя тока; сечение проводки зависит от размера обрабатываемой детали (минимум 6,25 мм);
  • проводов: плюсовой будет погружаться в электролит, минусовой, с держателем-«крокодильчиком», находиться на конце к обрабатываемой детали;
  • анодов из сплавов олова, свинца или сурьмы;
  • емкости подходящего размера из химически стойкого материала, не проводящего ток; идеальный вариант – пластиковая ванна; для хромирования небольшого размера деталей достаточно стеклянной банки;
  • деревянного ящика с теплоизоляцией из стекло- или минеральной ваты, в который будет помещаться емкость; использовать в качестве утеплителя можно также обычный песок;
  • герметичной крышки: изготовить ее можно из куска фанеры или деревянных досок;
  • тэна, мощность которого достаточна для обогрева жидкости в выбранной емкости до температуры 60-80°С;
  • контактного термометра или терморегулятора;
  • полой формы для заливки электролита с краном или кистью на конце; для ее изготовления используется пучок медной проволоки, закрепленный и обвязанный свинцовым проводом.

Подготовка электролита

В качестве него будет выступать хромовый ангидрид. Чтобы хромирование деталей в домашних условиях происходило без проблем, количество реактивов отмеряют до граммов. Для этих целей удобно использовать кухонные весы.

  1. Емкость до половины наполняют нагретой до 60°С дистиллированной водой. Можно заменить ее на кипяченую, хорошо отстоянную до выпадения осадка.
  2. Вводим электролит (на литр воды его понадобится 250 г). Размешиваем.
  3. Вновь льем воду, чтобы заполнить ванну полностью.
  4. Последний этап – добавление серной кислоты. Ее понадобится немного – на литр воды 2,5 г.
  5. Если количество воды в процессе химической реакции уменьшилось, допускается ее добавление.
  6. Пропускаем в течение 3,5 часов через раствор ток таким образом, чтобы на литр жидкости приходилось 6А. Она должна приобрести темно-коричневый цвет.
  7. Отключаем ток и даем раствору выстояться сутки. В помещении в это время должно быть темно и прохладно.

Подготовка поверхности

Этому немаловажному этапу стоит уделить особое внимание. Ведь получить качественное покрытие можно лишь на идеально очищенных и обезжиренных поверхностях. Поэтому, перед тем, как как хромировать металл, дерево или пластик в домашних условиях, их необходимо тщательно очистить.

На обрабатываемых деталях не должно быть пыли, грязи, малейших следы ржавчины. Старое покрытие и краску также следует полностью удалить.

После очистки неровные поверхности тщательно шлифуют. Никаких сколов и царапин оставаться не должно. Следующий этап – полировка наждачкой и специальными пастами.

Затем деталь, подлежащую хромированию, обезжиривают в нагретом почти до кипения (90°С) растворе. Изделия из цветных металлов можно обработать смесью мыла без косметических добавок и фосфорнокислого натрия. Сталь или чугун погружают в раствор из жидкого стекла, каустика, карбоната и фосфата натрия. Для удаления окисной пленки используют серную кислоту.

Хромирование поэтапно

Из-за высокой токсичности свободного хрома все работы необходимо проводить в нежилом помещении, оборудованном вентиляцией. Смывать отходы гальваники в канализацию строжайше запрещено. Для них следует подготовить специальную химически стойкую емкость из стекла или пластика.

  1. Анод погружается в ванну. Минусовой катод подсоединяется к трансформатору.
  2. Обрабатываемая деталь подвешивается на некотором расстоянии от стенок емкости. Она не должна их касаться.
  3. Подключается ток.
  4. Цвет покрытия будет зависеть не только от типа электролита, но и температуры его нагрева. Если она ниже 35°С, пленка будет матовой. Добиться блеска можно подъемом температуры до 35-55°С. Молочное хромирование получается при нагревании свыше 55°С.
  5. Время выдержки зависит от толщины будущего покрытия. Средняя продолжительность составляет 2-3 минуты.
  6. Хромирование пластика своими руками в домашних условиях мало чем отличается от гальваники других видов материалов. Деталь помещается в емкость с электролитом и подключается к минусовому проводу.
  7. Так как хром способен держаться не на всех видах металлов (лишь на латуни, никеле и меди), для покрытия стальных изделий требуется создание слоя-подложки.
  8. Начинают процесс с «толчка» тока. В первые 20-60 секунд его плотность должна быть в 2 раза выше рабочей. Это позволяет лучше обработать углубленные участки. Затем плотность тока устанавливают на рекомендуемую величину и обрабатывают деталь еще 1-1,5 минуты.
  9. В течение всего времени температура должна поддерживаться на одном уровне.
  10. Последний этап – двойная промывка водой. После первой производится нейтрализация электролита с помощью щелочи (обычной пищевой соды).
  11. Готовое изделие следует отполировать с помощью пасты.

Итак, хромирование деталей своими руками – процесс реальный. Конечно, получить износостойкое покрытие в домашних условиях будет проблематично – для этого потребуются токи до 100 А. Но тонкая прочная пленка из хрома вполне способна защитить детали и узлы от влаги и коррозии. Гальваника позволяет создавать и оригинальные предметы для украшения интерьера.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector