Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зачем нужны сетевые дроссели в силовых преобразователях

Зачем нужны сетевые дроссели в силовых преобразователях?

Зачем вообще нужны сетевые дроссели? Это — очень важный элемент силовой схемы мощного статического преобразователя, который служит буфером между питающей сетью и самим преобразователем. Сетевой дроссель выполняет несколько очень существенных функций: он повышает коэффициент мощности статического преобразователя в среднем на 30…35 %, не прибегая к сложным схемотехническим ухищрениям; подавляет высшие гармоники входного тока преобразователя, возникающие в неуправляемом выпрямителе; выравнивает линейные напряжения на входе преобразователя при некотором перекосе фаз

Рис. 2.4.6. Внешний вид некоторых типовых дросселей фирмы «Elhand»

питающего напряжения; подавляет быстрые изменения напряжения на входе преобразователя вследствие коммутационных воздействий стороннего оборудования на питающую сеть; снижает скорость нарастания токов короткого замыкания. Тот, кто мало-мальски сталкивался с силовой техникой, знает, что питающее сетевое напряжение под влиянием работы высокочастотных преобразователей, потребляющих ток от сети в импульсном режиме, подвержено искажениям. Сетевые дроссели призваны гасить эти помехи и снижают риск попадания гармоник в питающую сеть. Более того, если в качестве силовых ключей используются тиристоры, сетевые дроссели гарантированно обеспечивают защиту их от лавинного нарастания тока проводимости вплоть до момента переключения [37].

где 1 <— ток основной гармоники;

Мы уже говорили ранее, что любой статический преобразователь характеризуется определенным значением коэффициента мощности, связанным с его схемотехническим построением. За счет чего снижается коэффициент мощности? За счет появления реактивной составляющей потребляемой мощности и увеличения потребления полной мощности по сравнению с активной. В потребляемом от сети токе появляются, кроме основной, высшие гармоники — 5, 7, 11, 13, 17, 19. В соответствии с известным соотношением коэффициент мощности:

Нетрудно заметить, что чем больше действующие значения высших гармоник тока, тем меньше коэффициент мощности, и тем больше влияние статического преобразователя на питающую сеть. Однако здесь есть одно важное обстоятельство, которое нас выручает: реактивное сопротивление, присутствующее в питающей сети (это могут быть различные реактансы трансформаторов питающих подстанций), может существенно подавлять высшие гармоники. К сожалению, трансформаторных реактансов далеко не всегда хватает для эффективного подавления гармоник, поэтому приходится для преобразователей эти реактансы увеличивать, искусственно вводя сетевые дроссели.

Выбрать соответствующий дроссель фирмы «Elhand» для установки в разрабатываемый преобразователь достаточно просто. Главным условием выбора является соотношение индуктивности подводящих проводов (с учетом реактанса питающего генератора или трансформатора) Ls и собственно индуктивности сетевого дросселя Ld

где UT — величина напряжения на силовом приборе в момент его коммутации, В;

diT/dt — крутизна нарастания тока проводимости силового прибора, А/с.

Оценить параметры UT и diT/dt в случае использования IGBT приборов несложно — эти данные можно получить из анализа величины выпрямленного питающего напряжения, а также скорости нарастания тока при переключении, который определяется характером нагрузки преобразователя (активная, индуктивная, комбинированная) и скорости коммутации IGBT приборов.

Значительно сложнее оценить значение Ls, так как заранее неизвестно, как будет питаться преобразователь, от какого источника, какой длины окажутся питающие проводники, какой будет их длина и конфигурация. Поэтому фирма «Elhand» рекомендует в любом случае устанавливать в разрабатываемый преобразователь сетевой дроссель, ориентируясь по величине тока, потребляемой от сети. С этой целью, для облегчения такого выбора, специалисты «Elhand» разработали типовой ряд трехфазных дросселей типа ED3N. Некоторые типономиналы из этого ряда приведены в табл. 2.4.1.

Основным проектировочным критерием здесь является допустимое падение напряжения на дросселе в нагруженном состоянии, которое не должно превышать нескольких процентов от номинального напряжения сети:

Как устроен блок питания компьютера. Часть 2

Двухполупериодная схема выпрямления

Напряжение со вторичных обмоток трансформатора основного инвертора поступает на выпрямители каналов +3,3, +5 и +12 В.

По этим каналам потребляется практически вся мощность, отдаваемая блоком.

Обмотки трансформатора имеют вывод от средней точки. Используется двухполупериодная схема выпрямления с двумя диодами.

Читайте так же:
Запуск 3х фазного двигателя через конденсатор

Она называется так потому, что используются оба полупериода переменного напряжения.

Кстати, мостовая схема, которая используется в высоковольтном выпрямителе, тоже двухполупериодная.

Низковольтные выпрямители

Отметим, что в низковольтных выпрямителях, в отличие от высоковольтных, используют диоды Шоттки.

Они отличаются от обычных тем, что на них падает меньшее напряжение. По этим диодам могут проходить токи более десятка ампер.

Поэтому рассеиваемая на них мощность уменьшается значительно.

Пара диодов Шоттки помещается обычно в общий трехвыводной корпус с общим анодом или общим катодом. Эта сборка диодов устанавливается на общий радиатор.

У внимательного читателя может возникнуть вопрос. А почему это высоковольтный выпрямитель состоит из четырех диодов, а низковольтный – из двух?

Начнем с того, что высоковольтный выпрямитель невозможно сделать из двух диодов, так как входное переменное напряжение подается не через трансформатор, а непосредственно. А вот с низковольтным возможны варианты.

Можно было бы и здесь использовать мостовую схему из четырех диодов. Но в этом случае последовательно с нагрузкой были бы включены два диода (а не один как в двухдиодной схеме). На втором диоде были бы дополнительные потери, что уменьшило бы выходное напряжение.

Кроме того, на втором диоде бы рассеивалась довольно значительная мощность, что потребовало бы усиления охлаждения (более громоздкого радиатора и вентилятора с большей производительностью).

У нас ведь блок питания, а не отопительный радиатор :yes:

Недостаток такой схемы – наличие двух (а не одной) вторичных обмоток трансформатора в каждом канале. Но с этим приходится мириться.

Низковольтные фильтры

Низковольтные фильтры

После низковольтных выпрямителей в каналах +3,3, +5 и +12 В устанавливаются фильтры. Это, как правило, индуктивно-емкостные (LC) фильтры.

Применяются дроссели на ферритовых сердечниках, обладающие индуктивностью и электролитические конденсаторы.

Их также можно рассматривать как фильтры нижних частот, которые выделяют из пульсирующего напряжения постоянную составляющую.

Следует отметить, что полностью подавить высокочастотные помехи невозможно, их уровень сводят к некоей небольшой допустимой величине. В качественных питающих блоках используют конденсаторы с низким ESR (эквивалентным последовательным сопротивлением).

Чем ниже ESR, тем меньше будет греться конденсатор. Для уменьшения ESR устанавливают несколько конденсаторов параллельно (а не один с большой емкостью). Та же идеология используется в материнских платах компьютеров, где можно увидеть линейку конденсаторов возле процессора.

Некачественный блок питания

В дешевых блоках питания на элементах низковольтных фильтров часто экономят. Дроссели заменяют перемычками, ставят конденсаторы меньших емкостей и меньшим числом.

Это приводит к ухудшению фильтрующих свойств (увеличению пульсаций выходных напряжений).

Это чревато перегревом импульсного стабилизатора (питающего ядро процессора) на материнской плате и уменьшением надежности работы. Такие блоки «шедевры схемотехники» легко отличить по весу.

Качественные блоки питания не должны весить менее 1,5 – 2 кг. «Облегченные» блоки лучше не использовать.

Стабилизация выходных напряжений

Дроссель групповой стабилизации

В каналах +3,3, +5 и +12 В имеется и дроссель, выполненный на одном общем сердечнике. Это дроссель групповой стабилизации.

Вместе с контроллером и цепями обратной связи он способствует стабилизации этих выходных напряжений.

Напомним, что выходные напряжения должны находиться в пределах +/- 5% от номинального значения.

При увеличении выходного тока (и, следовательно, и потребляемой нагрузкой мощности) контроллер увеличивает ширину импульсов, открывающих ключи инвертора. При этом увеличивается мощность, поступающая в первичную обмотку основного трансформатора.

Со вторичных обмоток также снимается бОльшая мощность. Проблема в том, что увеличение тока может происходить только по одному из каналов. В ответ на увеличение тока контроллер увеличивает ширину импульсов, стремясь поддержать напряжение в этом канале.

Но при этом увеличиваются и напряжения в других каналах. При использовании дросселя групповой стабилизации увеличение тока водном из каналов увеличивает магнитный поток в сердечнике. При этом наводится напряжение в обмотках и других каналов (сердечник же общий!), которое вычитается из основного.

Читайте так же:
Какое масло заливать в токарный станок

На самом деле дело обстоит сложнее, применяются и другие схемотехнические напряжения, в частности резистивный делитель в каналах +5 и +12 В. Для стабилизации напряжения +3,3 В могут применять так называемый магнитный усилитель — отдельный дроссель на ферритовом сердечнике, работающий в режиме насыщения.

Охлаждение блока питания

Вентилятор в блоке питания

Как уже указывалось, охлаждение радиаторов с силовыми элементами осуществляется вентилятором. Тепло «выдувается» из блока питания наружу. В качественных блоках контроллер управляет вентилятором охлаждения.

Используя сигнал температурного датчика, он изменяет напряжение на обмотках вентилятора. Если температура внутри блока питания повысилась, контроллер поднимает напряжение на вентиляторе, увеличивая обороты. Если она уменьшилась — уменьшает.

Датчик могут устанавливать на радиаторе, где установлены низковольтные выпрямительные диоды. Однако такая схема достаточно инерционна. В более совершенных моделях контроллер отслеживает потребляемую мощность. Как только она увеличилась, он сразу поднимает обороты вентилятора, работая на опережение.

Блок питания содержит в себе цепи защиты. С их помощью при аварийном увеличении потребляемой мощности или коротком замыкании выводов контроллер останавливает инвертор, предохраняя силовые элементы от выхода из строя. В дешевых моделях эти цепи либо сильно упрощены, либо вообще отсутствуют. Это естественно, снижает надежность блока питания в целом.

В заключение скажем, что не рекомендуется включать блок питания без нагрузки. Во-первых, цепи защиты могут сообщить контроллеру об отсутствии нагрузки, и он не запустит инвертор. Во-вторых, самые дешевые модели могут просто выйти из строя. Нагрузка должна составлять величину хотя бы 10% от максимальной мощности блока.

Дроссели

Электрический дроссель — устройство, представляющее собой катушку индуктивности и предназначенное для ограничения переменной составляющей электрического тока. Другими словами, если ток в электрической цепи содержит постоянную и переменную составляющие то дроссель, последовательно включенный в эту электрическую цепь, за счёт своей индуктивности и большого сопротивления для переменного тока, значительно его снижает, а на постоянную составляющую тока, влияет минимально, за счёт низкого сопротивления постоянному току.

Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Рис. 1 Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Дроссели позволяют запасать электрическую энергию в магнитном поле. Типичное их применение — сглаживающие фильтры и различные селективные цепи. Их электрические характеристики определяются конструкцией, свойствами материала магнитопровода, его конфигурацией и числом витков катушки.
При выборе дросселя следует учитывать следующие характеристики:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн);
  • максимальный ток катушки;
  • допуск (величину отклонения от исходного значения) индуктивности;
  • температурный коэффициент индуктивности (ТКИ);
  • активное сопротивление провода катушки дросселя;
  • добротность дросселя, которая определяется на рабочей частоте как отношение индуктивного и активного сопротивлений;
  • частотный диапазон катушки.

В зависимости от диапазона частот технически различаются высокочастотные и низкочастотные дроссели

Высокочастотные дроссели подразделяются на два типа:

  • с постоянным значением индуктивности;
  • с переменным значением индуктивности, за счет подстраиваемого ферромагнитного сердечника.

Первый тип применяется, как правило, во входных цепях телефонных аппаратов, в сглаживающих фильтрах, в цепях питания ВЧ аппаратуры. Второй тип катушек используется в резонансных цепях – ВЧ, трактах приемных и передающих устройств.

В ламповых усилителях звуковой частоты высокочастотные дроссели, применяются крайне редко. Как правило их использование может быть предопределено схемотехникой выходных каскадов, построенных на высокочастотных пентодах большой мощности, предрасположенных к самовозбуждению на радиочастотах.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Конструкции дросселей высокой частоты показаны на рис. 2. Для дросселей длинных (а, б) и средних (б, в) волн применяется секционированная многослойная намотка. Дроссели для коротких (г) волн и для метровых (д) волн обычно имеют однослойную намотку — сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от сопротивлений ВС-0,5 и ВС-1,0.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Рис. 2 Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Читайте так же:
Cd4060be применение в зарядке шуруповерта

Высокочастотный дроссель можно изготовить самостоятельно, намотав необходимое количество витков, для получения нужной индуктивности на керамический или фторопластовый сердечник. Рассчитать необходимое количество витков можно по формулам, приведенным в разделе Индуктивности. Катушки с малой индуктивностью.

Лучше использовать, выпускаемые промышленностью ВЧ дроссели. Они имеют понятную яркую цветовую маркировку и отличаются высокой добротностью.

Цветовая маркировка высокочастотных дросселей

Рис. 2 Цветовая маркировка высокочастотных дросселей

Низкочастотные дроссели — предназначены для подавления низкочастотной составляющей переменного тока питающей сети и его гармоник. На рисунке 3, представлен низкочастотный дроссель, индуктивностью 3 Гн при токе подмагничивания 120 ma.

Рис. 3 Низкочастотный дроссель промышленного производства

Дроссели лучше, и проще всего использовать заводские, предпочтительнее от старых ламповых телевизоров Темп-6, Темп-6М, Темп-7, Рубин-102, Авангард, Беларусь, или других аналогичных по характеристикам старых телевизоров. Но если стоит задача изготовить ламповый усилитель высокого качества и надёжности своими руками, то дроссель придётся рассчитать, по приведенной ниже методике, и изготовить его самостоятельно. Принципиально новым подходом в современной ламповой схемотехнике, может оказаться требование обязательной настройки дросселей фильтра питания в резонанс на частоту 100 Гц. Это необходимо для повышения эффективности фильтрации выпрямленного напряжения.

Расчет низкочастотного дросселя для анодного источника питания

Дроссель — это важный элемент блока питания лампового усилителя. Совместно с электролитическими конденсаторами, он входит в состав П – образного низкочастотного фильтра и становится незаменимым элементом в цепи анодного питания усилителя класса Hi-End. В зависимости от мощностных характеристик усилителя и его качественных показателей, размеры дросселя могут сильно варьировать и доходить до половины размеров силового трансформатора.

Некоторые параметры, встречающиеся в расчетных формулах:
F — частота, Гц;
Sc — площадь сечения сердечника, кв. см;
Кс — коэффициент заполнения сердечника сталью;
Sok — площадь сечения окна, кв. см;
Кок — коэффициент заполнения окна медью;
Вт — максимальная индукция в сердечнике, Тл;
J — плотность тока в проводах, А/кв. мм.
I — постоянный ток в проводе обмотки дросселя, А.

Главный параметр дросселя — его постоянная времени, отношение индуктивности к сопротивлению обмотки L/R. Чем выше требуется эта величина, тем больше должны быть габариты магнитопровода, чтобы провод нужного диаметра и длины поместился в окне сердечника.

Индуктивность дросселя рассчитывается по уже известной формуле:

Индуктивность дросселя

При неизменной степени постоянного подмагничивания индук­тивность получается максимальной при определенной длине немаг­нитного зазора lz. От величины этого зазора зависит эквивалентная магнитная проницаемость сердечника:

От величины немагнитного зазора зависит эквивалентная магнитная проницаемость сердечника

В присутствии постоянного подмагничивания lz уже не является независимой переменной. Ключевой величиной в расчете дросселей и трансформаторов является степень подмагничивания или количество погонных ампервитков (aw0).

Количество погонных ампер - витков

Формула связи напряженности магнитного поля с инженерной величиной aw0, приведена ниже:

Формула связи напряженности магнитного поля с инженерной величиной aw0

Предлагаемый алгоритм расчета основан на экспериментальном графике зависимости магнитной проницаемости от aw0 рисунок 4.

Экспериментальный график зависимости начальной магнитной проницаемости от степени подмагничивания

Рис. 4 Экспериментальный график зависимости начальной магнитной проницаемости от aw0

Эти графики соответствуют массовым маркам сталей. Высококачественная сталь имеет в несколько раз большую магнитную проницаемость, однако в большинстве случаев рассчитывать на это не приходится. На графике показана зависимость начальной (т. е. в Отсутствие переменного магнитного поля) магнитной проницаемости от напряженности магнитного поля, выраженного в ампервитках на сантиметр. В системе СИ напряженность измеряется в амперах на метр. Следует помнить, что точки на графике соответствуют разным зазорам. Более высокие напряженности требуют большего зазора. В начале расчета величины aw0 и, соответственно, μ z не известны. Количество витков в обмотках может быть получено методом последовательных приближений по формуле:

Количество витков в обмотке дросселя

Для этого в формулу подставляются параметры трансформатора, требуемая индуктивность и пробная величина μ проб, по полученному количеству витков вычисляется степень подмагничивания aw0. По графику μ (aw0) находится μ z, вместо графиков при машинных расчетах можно использовать аппроксимирующие уравнения:

Для горячекатанной стали

Читайте так же:
Как разрезать автомобильное стекло

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для горячекатанной стали

Для холоднокатанной стали

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для холоднокатанной стали

Пробная μ проб корректируется и снова просчитывается количество витков. Эта процедура проделывается несколько раз до тех пор, пока изменение количества витков от просчета к просчету не будет незначительным (несколько процентов). В большинстве случаев достаточно двух-трех проходов. Если новое значение больше старой μ проб, то μ проб следует увеличить так, чтобы она стала немного больше μ z и наоборот. В конце расчета необходимо убедиться, что получившиеся L, N удовлетворяют требованию конструктивной реализуемости. Для этого вычисляется максимальное сечение провода S, которое можно разместить в окне:

Максимальное сечение медного провода, которое можно разместить в окне стального магнитопровода

Плотность тока в медном проводнике обмотки дросселя, рассчитывается по формуле:

Плотность тока в медном проводнике обмотки дросселя

Если плотность тока J не превышает обычных 1,5—2 А/кв. мм, то расчет можно считать оконченным, так как не требуется точного соответствия сопротивления оболочки заданному. Количество витков не должно превышать 3500—4000. При необходимости следует выбрать другой типоразмер магнитопровода и повторить расчет. При сборке намотанного дросселя необходимо уложить в зазор немагнитную прокладку нужной толщины. Точное соблюдение и подбор величины зазора необходимо только для выходных трансформаторов. Для дросселей вполне достаточно точности эмпирической формулы, приведенной ниже. Величина зазора рассчитывается в мм:

Эмпирическоая формула для приблизительного рассчета толщины немагнитного зазора в миллиметрах

Намотка катушек дросселей не имеет особенностей. В большинстве случаев (для дросселей блоков питания) нет необходимости даже в межслоевой изоляции. Обмотка обычно находится под высоким потенциалом, поэтому она должна быть хорошо изолирована от сердечника. Пропитка дросселей, как правило, необходима, чтобы избежать гудения. Результаты расчета дросселя на очень распространенном и дешевом сердечнике от выходного трансформатора лампового телевизора Ш 16×25 с размером окна 16 х 40 мм, приведены в таблице №1:

Сварочный дроссель

Приобретение сварочного аппарата (инвертора) – это всегда сопряжено с дилеммой: качество или цена. И, как часто это бывает, побеждает цена. Приобретая недорогой сварочный инвертор, его хозяин получает некоторое снижение качества работы с агрегатом. А точнее: сложность с розжигом электрода и жесткостью сварочного процесса. Но небольшая доработка (и недорогая) дает возможность изменить характеристики аппарата. Самый простой вариант – это установить дроссель. Что это такое, и для чего нужен дроссель.

post-34986-081002200-1403463382

Основное его назначение – стабилизация тока. Все дело в том, что в аппарате переменного тока поджиг расходника должен производиться при определенном напряжении, которое должно соответствовать синусоиде электрического тока. Сварочный дроссель, включенный в схему инвертора, позволяет сместить фазы между напряжением и электрическим током. А это в свою очередь влияет на легкость розжига электрода, плюс более ровному горению электрической дуги. В купе в конечном результате получается ровный и качественный сварной шов. Что и требуется для подтверждения качества конечного результата.

Дроссели можно устанавливать и в сварочных трансформаторах, и в инверторах, и в полуавтоматах. При использовании устройства в полуавтоматах для сварки можно констатировать уменьшение разбрызгивания металла, шов проваривается глубже, сварочный процесс проходит мягче.

Способы регулировки тока с помощью дросселя

Достоинства устройства несомненны. Практика это подтверждает полностью. Но есть три режима трансформатора, в которых он может находиться. При этом с помощью дросселя в некоторых из них можно регулировать силу сварочного тока. Кстати, дроссель подключается к вторичной обмотке трансформатора, при этом регулируется воздушный зазор в сердечнике.

  1. Холостой ход. Это режим, когда аппарат включен, а работа на нем не производится. Напряжение на трансформатор подано, электродвижущая сила во вторичной обмотке присутствует, а на выходе сварочного тока нет.
  2. Нагрузка. Зажигается дуга, которая замыкает электрическую входную цепочку. В нее входят обмотка дросселя и вторичная обмотка трансформатора. По цепи движется ток, значение которого определяется сопротивлениями двух обмоток. Если в цепь не установить дроссель, то на выходе получился бы ток максимального значения. А это большая вероятность получить прожог свариваемых металлов, залипание электрода. Степень настройки тока будет зависеть от воздушного зазора в стержне, на который наматывается обмотка дросселя.
  3. Короткое замыкание. КЗ образуется в тот момент, когда кончик электрода касается свариваемых металлических заготовок. При этом на сердечнике трансформатора образуется магнитный поток переменного типа, а на вторичной обмотке индуктируется электродвижущая сила. При этом сила тока будет зависеть от общего сопротивления обмотки дросселя и вторичной обмотки трансформатора.
Читайте так же:
Вводный курс по аргонодуговой сварке

Что касается воздушного зазора, то его увеличение приводит к тому, что сопротивление цепочки увеличивается. А это в свою очередь приводит к уменьшению магнитного потока, соответственно уменьшается индуктивное сопротивление обмоток трансформатора и дросселя. Уменьшилось сопротивление, увеличился ток на выходе. Все по закону Ома. Поэтому ток дуги увеличивается. Именно таким образом с помощью дросселя можно регулировать ток сварочной дуги.

В этой системе с дросселем есть один недостаток. Любой аппарат для сварки в процессе работы вибрирует. Это негативно сказывается на прохождении тока по катушке дросселя. Поэтому можно отказаться от плавной настройки и регулирования тока, а перейти на ступенчатую настройку. Для этого в сердечнике дросселя не надо устанавливать воздушный зазор. Для этого обмотка прибора делается с отводами (через определенное количество витков), к которым припаиваются контакты. Правда, необходимо учитывать тот момент, что через эти контакты будет проходить ток в несколько сот ампер. Поэтому нужно подобрать такие, которые ток такой силы смогут выдерживать.

И еще одна причина, по которой дроссель для сварочного аппарата нужно включить, чтобы процесс сварки проходил в «мягких» условиях. Есть такая характеристика зависимости напряжения сварочной дуги от силы тока на конце электрода, которая носит название падающая. Это очень полезная зависимость, особенно в тех случаях, когда сложно или трудно выдержать расстояние между электродом и свариваемыми металлическими заготовками.

Обеспечить падающую характеристику одним трансформатором практически невозможно, потому что сопротивление его обмоток здесь недостаточно. Обмотка дросселя практически в два раза увеличивает общее сопротивления электрической цепи, что позволяет обеспечить падающую зависимость напряжения от тока. То есть, это еще один плюс в копилку дросселя. Теперь становится понятным, зачем нужен этот прибор.

Как сделать дроссель своими руками

Для катушки дросселя лучше использовать магнитопровод серии UI . Намотка провода на катушку – процесс непростой и трудоемкий, требующий терпения и аккуратности. Есть в этом деле несколько моментов, которые определяют качество конечного результата.

  • Обязательно перед началом намотки производится изоляция ярма UI .
  • Наматывать медный или алюминиевый провод можно только в одном направлении.
  • Каждый намотанный на сердечник слой необходимо изолировать от последующего. Для чего может быть использована стеклоткань, специальная хлопчатобумажная изоляция или картон.
  • Изоляционный слой необходимо обрабатывать бакелитовым лаком.
  • Если устраивается ступенчатая регулировка тока, то выводы обмотки нужно обязательно маркировать. Это упростит в последующем подключение дросселя к сварочному аппарату, то есть, нужный вывод будет легко найти.

Ступенчатую регулировку тока можно организовать и при помощи нагрузочного омического сопротивления. По сути, это обычная спираль из нихромовой проволоки, которая подключается к выходу дросселя. Правда, необходимо отметить, что этот вариант не самый лучший. Нихромовая проволока сильно нагревается, иногда даже докрасна, так что это большая опасность.

В сварочных трансформаторах плавная регулировка тока обеспечивается смещением первичной обмотки относительно вторичной. Уменьшая между ними расстояние, производится уменьшение магнитного поля. А соответственно и снижение сопротивления в цепи. Обычно трансформаторные аппараты снабжаются рукояткой, которая расположена сверху агрегата. Вращая ручку в ту или другу сторону, уменьшается или увеличивается сила тока дуги.

Но для инверторного сварочного аппарата, который применяется в быту, лучше использовать для улучшения работы дроссель. Проще, удобнее, недорого. Тем более, сделать его своими руками – не проблема.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector