Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор редуктора для сварки

Выбор редуктора для сварки

Редуктор, в глобальном смысле слова, это устройство, изменяющее какой-либо физический показатель, обычно в сторону его уменьшения или понижения (редуцирование).

Редуктор для сварки представляет собой устройство, которое предназначено для выпуска газа из сопла под пониженным давлением, так как в баллоне он сильно сжат. Конкретные показатели давления зависят от вида газа или газовой смеси.

Цветовая маркировка

По сути своей редуктор — это регулятор давления смеси для сварки. Он в обязательном порядке входит в состав оборудования для сварочного полуавтомата, использующего принцип сварки в защищенной газовой среде. Минимум два редуктора (каждый к своему баллону) используют в установке газовой сварки и резки.

Безусловно, лучшим решением будет выбирать для баллона с определенным газом только специально предназначенный для него редуктор. Существует строгая система цветовой маркировки:

  • голубой цвет с черной надписью — кислород;
  • белый с красным текстом — ацетилен;
  • черный с синей надписью — технический аргон;
  • черный с белой надписью — сырой аргон;
  • черный с желтой надписью — углекислота (СО2).

В зависимости от того, применяется ли вами газовая сварка, аргонодуговая либо сварка в углекислоте, выбирайте соответствующий редуктор.

На рынке или в магазине это легко сделать по цвету — цвет редуктора ля сварки соответствует цвету баллона, для которого он предназначен. Голубой — для кислорода, черный — для аргона (он же подойдет для углекислого газа), и так далее.

Возможна ли взаимозаменяемость

Некоторые виды сварочных редукторов взаимозаменяемы, но далеко не все. Так, вместо специализированного редуктора СО2 для сварки допустимо использовать кислородный, но обратную замену производить категорически нельзя.

Кислород — химически активное вещество, сильнейший окислитель, поэтому для работы с ними используются специальные металлы и сплавы. К тому же кислород закачивается в газовые баллоны под давлением, превышающим этот же параметр для углекислоты более чем в 2 раза.

Сварочный редуктор для углекислого газа, накрученный на кислородный баллон, может продержаться, в зависимости от его качества, от нескольких часов до пары недель. Но в нем неминуемо произойдет полное разрушение уплотняющих мембран — основного элемента конструкции, вследствие чего прибор начнет травить.

Во избежание ошибочных действий сварщика на редукторах для горючих и негорючих газов делается разная резьба. Для горючих — левая, для негорючих, соответственно, правая.

Аналогичная резьба и в баллонах ля резки и сварки. При этом кислородный редуктор имеет правую резьбу. Кислород не горит сам по себе, но поддерживает горение. В некоторых условиях он взрывоопасен.

Кислородный редуктор, используемый во время сварки с углекислотным баллоном, ждет другая угроза. Углекислота вызывает промерзание контактирующих с ней деталей до -60 °C. Поскольку регулятор давления, предназначенный для кислорода, и не должен выдерживать такого режима работы, он также начнет разрушаться.

Что выбрать

Считается, что для бытовых условий сварки — кратковременных, эпизодических операций — подойдет любое устройство, которое совпадет по резьбе с баллоном.

Операцию вроде сварки мангала для дачи может выдержать даже углекислотный редуктор, накрученный на кислородный баллон (если используется газовая сварка) или на баллон для сварочной смеси из 80% аргона и 20% углекислоты. Другое дело, что впоследствии это механизм придется выбросить.

Типичным примером такого редуктора, предназначенного для работы с СО2, является очень известный и популярный среди сварщиков старой закалки УР 6-6.

Он компактный, недорогой, а благодаря наличию двух манометров позволяет довольно удобно определять расход «на глаз». Для бытовой сварки высокая точность не нужна. Один манометр при этом показывает остаточное давление в баллоне, а второй ориентирован на демонстрацию расхода газа — литр в минуту.

Кислородный и аргоновый регуляторы ля сварки теоретически взаимозаменяемы. При этом кислородный будет работать хуже с падением давления в баллоне до критической точки около 1 атмосферы.

Читайте так же:
Литье изделий из металла

В качестве примера аргонового редуктора для сварки можно назвать АР-40-2 отечественного производства. Существует и действительно универсальный регулятор давления — АР-40/У-30 (аргоновый редуктор/углекислотный). Он выдержит и перепады температур, и высокое давление.

Если нет ограничений по финансам, а объем сварочных работ предполагается высоким, то стоит предпочесть устройство не с дополнительным манометром, а с ротаметром.

Ротаметр значительно точнее показывает расход газовой смеси, поскольку работает по иным принципам — он делает измерения в режиме реального времени. Такими приборами пользуются профессионалы.

Дуговая полуавтоматическая сварка аргоном: принцип и особенности работы, необходимое оборудование и технология процесса

Электродуговая сварка в аргоновой среде (АДС) производится для защиты места соединения от влияния воздуха. АДС полуавтоматом освобождает сварщика от подачи электрода и имеет другие технические особенные свойства, которые и делают ее востребованной.

Что собой представляет дуговая полуавтоматическая сварка в среде аргона

Сварка MIG – полуавтоматическая сварка в среде инертных газов. В данном случае берется аргон – самый доступный и распространенный газ.

Принцип работы полуавтомата

Полуавтоматическая АДС – это механизированный процесс дуговой сварки, при котором электродная проволока подается с постоянной или переменной скоростью в зону сварки. Одновременно туда поступает газ аргон из баллона.

Сварка полуавтоматом решает проблему с неравномерным нагревом металла и защитой сварочного шва.

Инертный газ подается непосредственно в зону сварки. Идет регулировка подачи присадочной проволоки в соответствии с автоматической подстройкой сварочной силы тока.

Протяжный механизм подает сварочную проволоку. Правильное соотношение скорости подачи и температуры плавления дает равномерное заполнение шва.

Схема полуавтоматической сварки в среде аргона

Особенности сварки

Особенности сварки в среде аргона заключаются в следующем:

  1. Защищает сварной шов от окисления.
  2. Аргон – инертный газ. Он не вступает в реакцию металлом.
  3. Также инертный газ защищает сварной шов от окисления при воздействии воздуха, потому что аргон его вытесняет из места сварки, что очень важно при работе с цветными металлами.
  4. Благодаря среде аргона, такой метод дает более прочный сварной шов.

Достоинства и недостатки

Плюсы полуавтоматической АДС:

  1. При полуавтоматической аргонодуговой сварке обеспечивается высокое качество шва.
  2. Значительно облегчается поджиг дуги.
  3. Возрастает производительность работы.
  4. Просто. Главное, разобраться в технологии и прочитать инструкцию на сварочный аппарат. Подходит даже начинающим.
  5. Понятная настройка параметров на сварочных аппаратах.
  6. Наглядность. Видно формирование сварного шва.
  7. Свобода в пространстве.
  8. Соединение деталей малой толщины.
  9. Экономия времени. Не требуется зачистка швов от шлака и смена электродов.

Минусы данной сварки:

  1. Дорогое оборудование.
  2. Немобильность.

Технология

  • Сварочный полуавтомат для работы в среде защитного газа. Это могут быть инверторные или трансформаторные преобразователи тока с механизмом подачи проволоки. Трансформаторные сварочные устройства надежны, устойчивы к нагрузкам, у них невысокий КПД, дают помехи в сеть. Сварочные инверторы значительно легче трансформаторных, не дают помех, есть возможность точной настройки, стабилизируют сварочный ток, чувствительны к конденсату внутри устройства. Для простоты работы и точности настроек больше подходит инверторный преобразователь.
  • Присадочная проволока. Она подбирается по трем показателям: марка, вес бухты и диаметр. Выбор диаметра и размера намотки определяется по показателям инвертора и размеру горелки. При выборе марки проволоки нужно ориентироваться на справочные таблицы. Материал присадки должен соответствовать материалу соединяемых деталей и иметь более высокие характеристики по прочности. Диаметр подбирается, учитывая размер толщины свариваемых деталей. Например, диаметр проволоки в 1 мм подходит для однопроходной сварки металла толщиной 7-8 мм при сварочном токе в 200А. Для более качественного соединения деталей лучше выбирать проволоку с меньшим числом примесей.
  • Аргон в баллоне с редуктором.

Процесс сварки

Необходимо соблюдать следующие шаги:

  1. Устанавливается горелка и кабель массы.
  2. На баллон с аргоном устанавливается редуктор. Нужно проверить давление газа, оно должно быть выше остаточного.
  3. На выходной штуцер баллона устанавливается шланг и зажимается хомутом. Второй конец его подключается к сварочному аппарату.
  4. По инструкции к сварочнику установить на расходном редукторе значение, рекомендованное производителем. Для этого нужно открыть регулировочный вентиль.
  5. Прочистить канал провода горелки, если там осталась проволока от предыдущей работы.
  6. Установить катушку на размоточный шток. Проверить совпадение позиций штифтов и посадочных отверстий.
  7. Проволока пропускается через прокатывающий ролик.
  8. Установить прижимной ролик на место.
  9. С помощью регулировочного винта установить усилие прижима, чтобы проволока не проскальзывала в канавке.
  10. Протяжка проволоки в канал шнура горелки производится при снятом токопроводящем наконечнике.
  11. Накрутить наконечник подходящего диаметра на горелку и установить сопло на место.
  12. Подключить аппарат к сети.
  13. Подготовить свариваемые детали. Зачищается вся ширина кромки до металлического блеска.
  14. Разделка кромок и подготовка фасок не требуется для металлических поверхностей толщиной до 2,5 мм. Алюминий дополнительно очищается ацетоном.
  15. После подготовки деталей и проверки оборудования подключить клеммы электропитания. При постоянном токе применяется обратная полярность. К горелке с проволокой подключается «+» , а на изделие «-».
  16. Включить переключатель, который подает проволоку, в рабочее положение.
  17. Зажигается электродуга. Достаточно прикоснуться к металлу при наличии плавящейся проволоки.
  18. На нерабочем металле (образце) рекомендуется проверить точность настроек. И если требуется – подрегулировать.
  19. Производится сварка. Движение сопла горелки должно быть только в одном направлении, без поперечных движений. На вертикальной детали движение сопла сверху вниз.
  20. При большой толщине металла требуется подогрев до температуры 150-300 0 С.
  21. Детали свариваются на высокой скорости однослойным швом.
  22. Заканчивать сварку нужно, постепенно снижая температуру дуги (уменьшая силу тока). Перед этим убрать (прекратить подачу) присадочную проволоку.
Читайте так же:
Как установить мебельные стяжки

Расход углекислоты при сварке полуавтоматом

Техника полуавтоматической сварки в среде углекислого газа

Для ремонта кузовных деталей автомобиля, работ с тонколистовой сталью применяется полуавтоматическая сварка в среде углекислого газа. Благодаря автоматизации процесса, ровный шов может получиться даже у начинающего сварщика.При выполнении работ, обрабатываемая поверхность нагревается меньше, в результате наблюдается только незначительная деформация или коробление детали.

Где используется сварка углекислотой

  • Изготовление стальных конструкций с большим количеством сварных швов на 1 п.м.
  • Машиностроение.
  • Изготовление приборов.
  • Ремонт и производство кованых конструкций: решеток, перил, ворот, ограждений и т.д.

Техника сварки в углекислом газе

В результате получается равномерный шов без наплывов, обеспечивается достаточный провар стали и механическая прочность получаемого соединения.

  • Перед началом сварки следует убедиться в том, что защитный газ выходит из горелки. Рабочее давление углекислоты при сварке полуавтоматом 0, 02 кПа. Но этот показатель не является абсолютным, наличие сквозняка, ветра, несколько увеличивает расход материала. Соответственно давление для создания нормального шва будет увеличиваться.
  • Угол горелки должен находиться в пределах 65-75°. Шов необходимо вести справа налево, так лучше просматриваются свариваемые кромки.
  • Сила тока. Режимы сварки в углекислом газе регулируются методом изменения скорости подачи проволоки и напряжения дуги.

Какое давление углекислоты при сварке

Для определения оптимальной нормы расхода углекислоты при сварке полуавтоматом, опытные сварщики используют следующий метод. Выставляют давление приблизительно, так, чтобы получался идеальный шов, после этого снижают подачу газа и напряжение, пока сварочное соединение не станет пузыриться и шипеть. Возвращаются к успешной последней настройке.

Расход углекислоты для сварочного полуавтомата
  1. Скорость подачи проволоки — зависит от ширины расходного материала, составляет, от 35-250 мм/сек.
  2. Расход газа — определяется качеством флюса и погодными условиями. Может варьироваться от 3 до 60 л/мин.
  1. Затраты на подготовительные работы составляют около 10% от общего расхода СО².
  2. Удельный расход газа, необходимый для прохождения шва.

Существует возможность обойтись без использования защитного газа. Вместо СО² применяют порошковую проволоку. При нагревании проволока, покрытая порошком, выделяет газ, который и защищает обрабатываемую поверхность от перегрева.

  • Выпрямитель — может быть трансформаторного или инверторного типа. Первый оптимально подходит для толстой проволоки, второй обеспечивает равномерную подачу напряжения и стабильную дугу сварки.
  • Подающий механизм — имеет ограничения по толщине проволоки. При выборе следует учитывать, что не каждый флюс можно будет использовать при выполнении сварочных работ.
  • Держатель со шлангами.
Читайте так же:
Как сделать устройство для заточки ножей

Расход газа на сварку. Расчёт защитного газа

В этой статье рассмотрим расход электродов и газов, рекомендуемые нормы расхода и как подсчитать расход самостоятельно. Рассмотрим и некоторые особенности вычисления расхода материалов при сварочных работах, по каким причинам расход может увеличится. Приведем в нашей статье и пару формул, как можно самостоятельно рассчитать рекомендуемый расход сварочных материалов.

Расчет расхода электродов для сварки – один из важных этапов подготовительных работ. Воспользовавшись одной из существующих методик расчета расхода электродов, можно не волноваться, что придется прерывать сварочный процесс из-за нехватки присадочного материала, что, несомненно, скажется на качестве выполненных работ.

В наше время сварка занимает главенствующие позиции в соединение металлоизделий. Сварочные работы составляют основу в машиностроении, в строительстве и пр. Таким образом, приобретают важность знания о сварочных процессах и применении таких материалов, как флюсы. В данной статье вы ознакомитесь с принципом действия флюсов и особенностями их использования во время сварки алюминия.

Сварочные работы полуавтоматом в защитной среде углекислоты

Сварка полуавтоматом в углекислоте относится к качественным и вместе с тем сравнительно недорогим способам соединения металлических заготовок Полуавтоматическая сварка в среде углекислого газа чаще всего используется в тех случаях, когда возникает потребность в надёжном сочленении металлических частей изделий различной толщины. Кроме того, этот вид сварочных процедур востребован в ситуациях, когда тщательная зачистка соединяемых деталей невозможна по тем или иным причинам.

Преимущества и минусы

Согласно ГОСТ сварка полуавтоматом в углекислоте предполагает использование постоянного тока прямой полярности, поскольку при обратном показателе стабильность дуги получить не удаётся. Прямой ток подходит и для случая, когда сварка осуществляется методом наплавления металла, обеспечивая при этом большую эффективность процедуры.

Несмотря на то, что по своим защитным свойствам углекислый газ заметно уступает другим газам (аргону, в частности) – он, тем не менее, прекрасно подходит для обработки большинства типовых промышленных металлов.

Объясняется это не только низкой стоимостью углерода, позволяющей рассматривать этот вариант сварки как бюджетный, но и более безопасными условиями хранения и непосредственного использования материала.

К другим преимуществам полуавтоматической сварки в среде углекислого газа следует отнести:

  • высокое качество полученных соединений (с минимумом брака), сочетающееся с низкой стоимостью расходного материала и высокой производительностью работ;
  • возможность сваривать заготовки в подвешенном состоянии (без подкладки);
  • допустимость сплавления изделий небольшой толщины;
  • более эффективное в сравнении с аргонодуговой сваркой использование энергии сварочной дуги.

Все перечисленные достоинства углекислого газа должны учитываться наряду с проблемными местами, связанными с послойным способом формирования шва и его пористостью при некачественном сплавлении. У такой сварки низкая оперативность.

У такой сварки низкая оперативность. Она объясняется тем, что работа в среде углекислого газа требует длительной подготовки оборудования к запуску.

Углекислым газом категорически запрещается пользоваться в плохо проветриваемых или замкнутых помещениях, поскольку его пары в воздухе могут привести к асфиксии (удушью).

Области применения

Дуговая обработка металлов в углекислоте и используемый при этом сварочный полуавтомат преимущественно востребованы, когда нужно получить простые соединения заготовок. Технология сварки в углекислом газе находит широкое применение в следующих областях:

  • при сооружении капитальных объектов (мостов, эстакад и подобных им сооружений, монтируемых на основе каркасных металлоконструкций);
  • в заводских условиях и в цехах, профиль работы которых связан с изготовлением металлических изделий или их ремонтом (на станциях техобслуживания, в частности);
  • при строительстве сварных ферменных сооружений сельхоз назначения;
  • в дачном и частном хозяйствах (при изготовлении заборов, ворот, калиток, капитальных теплиц).
Читайте так же:
Когти для лазания по деревьям

Иными словами, сравнительно простой и надёжный метод сварки в газе, а также сам углекислотный полуавтомат востребованы везде, где нужно качественно и быстро обработать металлические изделия самого различного профиля.

Расход углекислоты

Несмотря на то, что количество расходуемого при сварке углекислого газа нормируется с учётом множества различных факторов – все они могут быть сведены к нескольким пунктам.

Эта величина зависит от скорости перемещения проволоки в полуавтомате, которая в свою очередь определяется параметрами самого расходного материала. На расход оказывает влияние качество используемого флюса и давление, под которым газ подаётся к месту его непосредственного применения. В зависимости от этих факторов величина расхода может варьироваться в пределах от 3-х до 60 литров в минуту.

Приблизительный расчёт расходного показателя может быть проведён самостоятельно с учётом ряда обстоятельств. Во-первых, следует принимать во внимание, что расход углекислоты только на этапе подготовительных работ составит не менее 10% от общего показателя.

Во-вторых, необходимо знать удельное значение расходования для углекислого газа (объём, приходящийся на подготовку одного шва). Помимо этих факторов при расчетах должны быть учтены как толщина плавильной проволоки, так и соответствующий параметр обрабатываемых металлических заготовок. Добавим к этому, что в стандартный баллон вмещается порядка 25 килограмм, и что из каждого кило газа после химической реакции образуется примерно 500 литров газа (указано в ГОСТ 8050-64).

На основе исходных данных после суммирования получается, что одного баллона с углекислым газом вполне хватает для работы без остановок в течение приблизительно 15-ти часов.

Нередко при работе с полуавтоматом сварщику приходится использовать специальную порошковую проволоку, содержимое которой заменяет углекислый газ. В этом случае соответствующие расчёты проводятся по совсем другим методикам.

Редуктор углекислотный – устройство, принцип работы, как выбрать

Редуктор углекислотный – устройство, принцип работы, как выбрать - Кедр - 1

Сваривание деталей в среде защитного газа подразумевает подачу такого газа в зону сварки под определённым давлением. Это давление намного меньше, чем давление газа в газовом баллоне. Напрашивается естественный вывод о необходимости снижения давления перед подачей его в горелку. Для этих целей служит специальное устройство – редуктор.

Принцип работы углекислотного редуктора

Принцип работы очень прост, что позволило создать надежное устройство. Работа начинается с подачи газа через входное отверстие. Когда давление газа в аппарате достигнет нужной величины, мембрана пойдет вверх и через механическую тягу закроет входное отверстие. Газ будет выходить на горелку через выходное отверстие, что приведет к снижению давления в редукторе. Мембрана пойдет вниз и откроет входное отверстие и газ из баллона снова начнет поступать в редуктор.

Таким образом, в редукторе и на выходе из него будет поддерживаться постоянное давление, необходимое для ведения сварочных работ. Величину этого давления можно задавать и регулировать силой сжатия пружины, для чего имеется специальная гайка.

Конструкция

Существует два вида конструкций: устройство прямого типа и устройство обратного типа. В устройстве прямого типа газ, поступающий из баллона, давит на клапан снизу и открывает его. Если давление на выходе ниже рабочего давления, мембрана выгибается и открывает редуцирующий клапан, осуществляя подачу газа из баллона. Для регулирования давления необходимо вращать регулирующий винт.

В устройствах обратного типа регулировка осуществляется как раскрытием клапана, так и выгибанием мембраны. Для контроля давления газа в баллоне и на выходе из аппарата рекомендуют установку двух манометров. Устройства обратного типа характерны тем, что у них повышается рабочее давление по мере расхода газа в баллоне.

ГК «КЕДР» выпускает и реализует проверенные временем углекислотный редуктор УР-6 и его улучшенную версию КЕДР УР-6-6м. Они относятся к одноступенчатым баллонным редукторам прямого типа и состоят из следующих элементов:

Читайте так же:
Из чего состоит обратный клапан

Устройства обеспечивают рабочее давление 0,6 мПа и имеют пропускную способность 6м 3 /час. Ознакомиться с характеристиками, заказать и купить углекислотные редукторы можно на сайте производителя КЕДР в Москве.

Сфера применения

При использовании баллонного углекислого газа вам не обойтись без редуктора. Чаще всего он применяется в следующих случаях:

сварка в среде защитного газа;

в химической промышленности;

для газирования продуктов в пищевой промышленности и подачи пива;

для нейтрализации щелочей (углекислота);

в сельском хозяйстве для ускорения роста растений;

при производстве бумаги

Иногда, в отсутствие углекислотного редуктора, возникают вопросы о возможной замене его кислородным. Они действительно очень похожи и размерами, и наличием двух манометров. Но мы категорически не советуем заменять эти редукторы один другим. И хоть внешне они отличаются только цветом, по сути это совершенно разные устройства. Манометр на входе кислородного редуктора рассчитан на 25МПа, а на углекислотном всего 15 МПа. На выходе соответственно: 16 МПа и 1 МПа. Разные настройки и у предохранительных клапанов: 9 – 10 атмосфер у углекислотного и 16,5 – 18 у кислородного.

Как выбрать

Приобретая углекислотный редуктор, в первую очередь обращайте внимание на окраску: она должна быть черной с жёлтой надписью. Назначение редуктора должно соответствовать типу сварочного оборудования и необходимому расходу газа. Входное и выходное значение давления должно быть 15 МПа и 0,6МПа соответственно. Убедитесь в том, что характеристики точности регулирования и пропускной способности соответствуют вашим требованиям.

Устанавливая приобретённый редуктор на штатное место, проверяйте герметичность и надёжность резьбовых соединений и плотность закрывания газового баллона. Также рекомендуется установка ротаметра, который позволит визуально следить за расходом газа. Опытный сварщик может определить наличие утечки газа по показаниям ротаметра.

Правила работы

Перед началом работы необходимо удостовериться в исправности манометров и расходомеров. Визуально определить исправность уплотняющих прокладок на входном штуцере и уплотняющих поверхностей ниппеля и выходной втулки. После этого можно присоединять редуктор к баллону и горелки к редуктору. Настройка и регулировка рабочего давления производится по манометрам. После чего следует убедиться, что система «держит». Каждые три месяца проверять герметичность соединения показывающих устройств и предохранительного клапана с корпусом редуктора.

При обнаружении любой неисправности необходимо закрыть запорный вентиль баллона, выпустить газ из редуктора и отсоединить его. При возникновении случаев обмерзания редуктора необходимо организовать его подогрев. К работе с горючими и взрывоопасными газами, с сосудами под давлением допускается только подготовленный соответствующим образом персонал. Наличие квалифицированного персонала и соблюдение правил техники безопасности – залог безаварийной работы.

Как устранить обмерзание редуктора и баллона

При сварке в среде защитного газа качество шва зависит от стабильной и равномерной подачи газа. При использовании углекислого газа может происходить обмерзание баллона и редуктора. Обмерзанию способствует большой расход защитного газа (чаще при сварке полуавтоматами) и низкая температура окружающей среды. В таком случае сваривание становится проблематичным: вместо газа в зону сварки «выплёскивается» жидкая углекислота.

Во избежание случаев обмерзания необходимо использовать подогреватели газа. Они бывают двух видов: корпусные и проточные. Корпусные нагреватели используют для ведения сварочных работ при минусовых температурах. Они крепятся непосредственно на редуктор и поэтому могут использоваться только на устройствах определённого типа.

Эти массивные устройства обеспечивают надёжный обогрев всего корпуса редуктора, запитываются от источника электрической энергии напряжением 36 вольт. Такое напряжение предусматривается на большинстве сварочных аппаратов. В противном случае нужно применять дополнительный трансформатор 220/36 В.

Большими удобствами и универсальностью обладают проточные нагреватели газа. Установленные между баллоном и редуктором, они имеют электрическую спираль, которая нагревает протекающий через них газ. Такую конструкцию можно применять для любых видов редукторов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector