Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Низковольтный усилитель НЧ на NS8002

Низковольтный усилитель НЧ на NS8002

Низковольтный усилитель НЧ на NS80023Вт монофонический усилитель мощности звука низкой частоты в корпусе

SOP 8. Производитель продукта-NSIWAY.

Микросхема NS8002 представляет собой мостовой усилитель мощности звука. При рабочем напряжении 5 В максимальная мощность составляет 3 Вт (отрицательная нагрузка 3ΩBTL, THD + N <10%).

Схема применения устройства проста, всего несколько резисторов и конденсаторов в обвязке. Выход NS8002 без внешних проходных конденсаторов и сетей snubber.

Схема УНЧ на NS8002

Низковольтный усилитель НЧ на NS8002

Схема стерео УНЧ на двух NS8002

Для стерео варианта понадобится две микросхемы.

Низковольтный усилитель НЧ на NS8002

Возможный вариант монтажной платы стерео усилителя

Низковольтный усилитель НЧ на NS8002

Устройство, использующее пакет SOP, особенно подходит для небольших портативных систем. NS8002 by Control переходит в спящий режим, тем самым снижая энергопотребление. Схема защиты от внутреннего перегрева NS8002 работает стабильно. Путем настройки внешнего резистора можно отрегулировать усиление.

Характеристики усилителя

  1. Высокая выходная мощность (THD + N <10%): 3 Вт (нагрузка 3 Ом)
  2. Ток утечки в режиме отключения питания: 0,6 мкА
  3. Защита от внутреннего перегрева
  4. Внешнее регулируемое усиление
  5. Широкий диапазон рабочих напряжений 2,2 В

В магазине из Китая можно купить сборку готового усилителя на NS8002

Низковольтный усилитель НЧ на NS8002

Низковольтный усилитель НЧ на NS8002

Усилитель мощности FM диапазона до 5 ВаттДанный усилитель может заинтересовать любителей УКВ связи при построении передатчиков.

Схема усилителя мощности имеет коэффициент усиления до 17db, при входном сигнале около 100 мВт мощность на выходе составляет до 5Вт.

Усилитель для приёмника FM диапазона

Простой ВЧ усилитель для FM-диапазона своими руками

Для приёма удалённых станций FM-диапазона можно порекомендовать простую схему ВЧ-усилителя на одном транзисторе.

Схема УВЧ с общим эмиттером построена на транзисторе 2SC2570.

HI-FI усилитель на TDA2050

Стерео усилитель с дополнительным выходом для наушников своими руками

Усилитель построен на одной интегральной микросхеме TDA2050V, которые производят компании stmicroelectronics. TDA2050V предназначена для использования в качестве усилителя класса AB, в диапазоне напряжений питания от +/-4.5 в до +/-25В. При выходной мощности 25Вт КПД составляет около 65%.

Ваш комментарий

— НАВИГАТОР —

Подпишитесь на нашу RSS-ленту, чтобы получать новости сайта. Будь всегда на связи!

10-ка лучших статей

    — 214 980 просм. — 199 755 просм. — 198 056 просм. — 189 986 просм. — 172 391 просм. — 165 944 просм. — 139 665 просм. — 134 028 просм. — 130 458 просм. — 118 792 просм.

    Мы в соц.сетях:

Присоединяйтесь к нам:
Мы в одноклассниках! Мы в моем мире!
Стань почетным читателем нашего сайта! наш виджет на Яндексе!

Архивы статей

Коротко о сайте:

Мастер Винтик. Всё своими руками! — это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.

Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму.
Программы, схемы и литература — всё БЕСПЛАТНО!

Если сайт понравился, добавьте в избранное (нажмите Ctrl + D), а также можете подписаться на RSS новости и всегда получать новые статьи по ленте.
Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ!
Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!

Понижающий преобразователь напряжения с выходным током до 20А

Понадобился мне для одного из проектов мощный понижающий преобразователь напряжения и решил я его перед применением немного протестировать.
Небольшой осмотр, тесты, выводы.

На самом деле задача у меня была получить ток до 40А при напряжении 4.8-5 вольт, причем нагрузку можно разделять и можно использовать 2 преобразователя по 20А. Но рисковать заказывая сразу пару не очень хотелось и решил взять для начала на пробу один.

К слову, вообще это уже второй такой заказанный преобразователь, некоторое время я уже пытался его заказать, но прислали менее мощную модель и самое обидное то, что заметил я это уже когда прошли все сроки защит. Пришлось повторить заказ, но уже в другом магазине.

Упаковка простейшая, конверт и антистатический пакет, преобразователь компактный, размеры 60х52х28мм.

Заявленные параметры (со страницы товара)
Входное напряжение: от 6 В до 40 В постоянного тока (от 10 В до 40 в предлагается)
Выходное напряжение: 1,2 В до 36 В постоянного тока
Выходной ток: 20А (макс.), 15А (рекомендуется)
Эффективность: 95% (24В до 12В, 20А)
Выходная пульсация: ≤ 50 мВ
Способ подключения: терминал
Защита от короткого замыкания: самовосстановление (не может долгое замыкание)
Размер: 60x53x27 мм/2,36×2,08×1,06"

Внешне выглядит относительно аккуратно, ничего не болтается, не висит, радиаторы прикручены небольшими винтиками, а не висят на выводах компонентов. Есть четыре крепежных отверстия.

Читайте так же:
Как работают подшипники лекция

1. Со стороны входа имеется винтовой клемник, выключатель и светодиод индикации включения. Выключатель коммутирует сигнал управления ШИМ контроллером, клемник так себе, какой-то "жиденький"
2. Со стороны выхода такой же терминал, рядом два подстроечных резистора для установки выходного напряжения и ограничения тока.
3. Входные конденсаторы 2шт 470мкФ 50 вольт
4. Выходные конденсаторы 3шт 270мкФ 35 вольт с закосом "под фирму", хотя вполне может статься что и оригинал, сложно так сказать.
5, 6. Преобразователь с синхронным выпрямлением, соответственно на радиаторах установлены два полевых транзистора, а не транзистор + диодная сборка. Транзисторы одинаковые — NCE8290, N-канальные, 82В 90А 8.5мОм, что в принципе даже неплохо.

Компоновка не сильно плотная, но тем не менее, не очень удачная, конденсаторы стоят впритирку к силовому дросселю, который в работе обычно довольно сильно греется.

ШИМ контроллер, операционный усилитель, шунт и остальная мелочь находится снизу платы.

Справа вверху виден ШИМ контроллер — LM25116, ниже шунт 4мОм и ОУ для усиления сигнала с него — LM321

Из ключевых особенностей ШИМ контроллера — синхронное выпрямление, встроенный драйвер с током до 3.5А, питание до 42 вольта, настраиваемое ограничение тока и выходное напряжение в диапазоне 1.21-36 вольт.
Если коротко, весьма интересный контроллер.

В даташите имеется схема типового включения, но собственно здесь ничего необычного, виден как контроллер, так и силовые транзисторы, а также токоизмерительный шунт. Отмечу что в даташите есть два примера включения и в обоих контроллер и силовая часть питаются от разных источников, у обозреваемого преобразователя источник один, что также допускается, но диапазон входного напряжения при этом ограничен максимальным для контроллера, т.е. 42 вольта.

В реальности с выходным напряжением все немного похуже.
1, 2. Если минимальное в общем-то соответствует заявленному, хотя без нагрузки и болтается в диапазоне примерно 1.24-1.45 вольта.
3. То вот максимально я смог получить только 30 вольт.
4. При том что на входе было установлены максимально заявленные в описании 40 вольт, так что это не ограничение из-за входного напряжения, а не совсем корректно рассчитанный делитель обратной связи.

Потребление вы выключенном состоянии практически нулевое. Во включенном, но без нагрузки в диапазоне 12-24 вольта ток около 20мА, но при входных 36 заметно поднимается и составляет уже 60мА. Измерение в данном случае грубое, но не думаю что это критично.

Ограничение тока работает, но минимум можно выставить только около 700мА, максимум что смог проверить, 12.2А, выше не стал поднимать, предохранители к мультиметру стоят дорого. При некоторых значениях тока преобразователь тихонько пищал.

Далее шла проверка точности поддержания напряжения при токах нагрузки от 5 до 20А. Для начала выставил на выходе 5 вольт.

И затем измерил выходное напряжение при токах 5, 10, 15 и 20А. Мультиметр был подключен к проводникам печатной платы под клеммником.
В диапазоне токов 0-20А просадка напряжения составила 0.12 вольта. Не скажу что это плохо, но при малых выходных напряжениях уже заметно.

Такая же проверка, но при выходном 12 вольт, входное было 24 вольта.
Сначала без нагрузки

Затем при токах 5, 10, 15 и 20А.
Имеем ту же разницу в 0.12 вольта, предположу что имеется проблема с корректностью разводки печатной платы.

Пока гонял преобразователь в разных режимах и делал фото для обзора, заметил что появился нагрев и был удивлен что температура довольно высокая, хотя не сказал бы что предварительные тесты заняли много времени.

Кроме того, обратил внимание на заметную зависимость КПД от входного напряжения, а точнее, от разницы вход/выход.
Для примера на входе 12 вольт, на выходе 5 вольт и ток 20А, при этом преобразователь потребляет 114.5Вт.

При 24 вольта по входу уже 117.3Вт, а если поднять входное до 36 вольт, то еще больше, 121.6Вт.
Т.е. при выходном 5 вольт 20А и изменении входного напряжения в диапазоне 12-36 вольт имеем от 114.5 до 121.6Вт.
В моем случае входное будет 10-14 вольт, потому все нормально, но возможно кому-то будет критично.

КПД измерялся в нескольких режимах, ниже три графика для выходного 5 вольт и входного 12, 24 и 36 вольт, по горизонтали ток нагрузки от 2.5 до 20А кратно 2.5А.

Результаты довольно грубые так как входная мощность оценивалась по показаниям блока питания, а значит влияло падение на проводах от него к преобразователю, думаю реально КПД примерно на 1% выше.

Читайте так же:
Болгарка на станине для резки металла

Здесь также три графика, но в других режимах, пара с выходным 12 вольт и входным 24 и 36 вольт, а также вариант с выходным 24 вольта и входным 36 вольт (верхний график).
Отмечу что в тесте 36-24 вольта был ток нагрузки 15А и соответственно выходная мощность почти 360Вт при максимальной заявленной 300Вт.

Как я писал ранее, преобразователь ощутимо греется, для проверки я провел тест при выходном напряжении 5 вольт, входном 12 вольт и токах нагрузки 10 и 15А. Отмечу что этот один из наиболее оптимальных режимов, в других нагрев может быть еще больше.
1. На момент начала теста преобразователь был уже немного прогрет.
2. Через 20 минут при токе 10А нагрев в пределах нормы.
3. Еще через 20 минут при токе 15А нагрев стал более заметным, максимальную температуру имел входной транзистор — 106 градусов.

По результатам теста рекомендую либо ограничивать выходной ток, либо подумать об активном охлаждении.

Пульсации.
В общих чертах очень даже неплохо, я как-то ожидал худшего.
Выходное напряжение 5 вольт, входное 12.
1. Без нагрузки
2, 3, 4. При токах 5, 10 и 20А

На самом деле в спектре пульсаций присутствовали "иголки", но так как тест производился с насадкой на измерительный щуп (1мкФ+0.1мкФ), то их не видно.
Ниже осциллограмма с прямым включением щупа при токе 20А и соотношении вход выход 12-5.

Те же токи нагрузки, 5, 10 и 20А, но соотношение вход/выход другое, слева 30-5 вольт, справа 24-12 вольт.

Если присмотреться к вышеприведенным осциллограммам, то думаю можно заметить что "горизонт завален", т.е. каждый последующий импульс выше или ниже предыдущего.
Меня заинтересовал этот момент и я увеличил время развертки в итоге получив такую вот не очень приятную картинку. Видно что общий размах пульсаций около 80мВ, проявляется такое при выходном напряжении 12 вольт и выше, а также при токах около 15А и более, нижняя осциллограмма сделана при выходном напряжении 12 вольт, входном 24 вольта и токе 15А.

Под конец обзора сравнительное фото других преобразователей в том же формфакторе, посередине повышающий, справа понижающий, но на 10А. Думаю также написать небольшие обзоры, если кому-то интересно.

В качестве итогов скажу, что в общих чертах преобразователь работает, но есть довольно много замечаний.
1. Нагрев, более 15А с него длительно не снять без дополнительного охлаждения, но это указано в описании. Но даже 15А это уже работа близко к предельным значениям, особенно при большой разнице вход/выход.
2. Регулировка тока только от 0.7А
3. Выходное напряжение до 30 вольт при заявленных 36.
4. Входные конденсаторы низкого качества.
5. Клемники хилые, особенно под заявленные 20А.

Если коротко, то производитель взял в общем-то неплохую элементную базу, но в итоге получил средненький преобразователь, думаю что часть проблем кроется в ошибках трассировки. Использовать вполне можно, в какой-то степени он мне даже понравился, но над охлаждением стоит подумать.

Одноплатные усилители мощности звуковой частоты D-класса (подборка с Алиэкспресс): маленькие, но сильные!

Усилители D-класса имеют по крайней мере одно неоспоримое и очень важное преимущество: высокий КПД, достигающий 90% и более.

Такой КПД позволяет создать в малых габаритах очень мощные усилители.

Однако же, среди мировой радиолюбительской общественности не утихают споры: а не потерялось ли одновременно с повышением КПД качество звука?

Некоторая потеря качества не исключена, поскольку в большинстве мощных усилителей должны стоять фильтры; а они повышают выходное сопротивление в области высоких частот и могут искажать АЧХ (подробности — по ссылке, сторонний ресурс).

И всё-таки, усилители D-класса при грамотном схемотехническом построении и достаточно высоком качестве источника питания способны дать очень высокое качество звука, достойное класса Hi-Fi.

Немного терминологии, применяемой далее:

SE (Single Ended) — обычный ШИМ-выход в усилителе D-класса;

BTL (Bridge-Tied Load) — схема с мостовым выходом (два SE-выхода в противофазе по звуковой частоте);

PBTL (Paralleled Bridge-Tied Load) — параллельное соединение выходов BTL, работающих синхронно.

Мощность усилителей в этой подборке указана согласно документации (datasheet) на применённые микросхемы; но надо сказать, что далеко не всегда номинальную мощность из них удаётся «выжать». А уж фантазии продавцов на Алиэкпресс в отношении мощности вообще не знают границ. 🙂

Цены указаны в долларах (т.к. цены в рублях быстро становятся недействительными) и в дальнейшем могут меняться в любую сторону. Но на распродаже 11.11 они, скорее всего, на несколько процентов упадут.

Читайте так же:
Инструмент для сверления отверстий в металле

Одноплатные УНЧ на основе микросхемы TPA3116D2

Микросхема TPA3116D2 работает в мостовом режиме и оказалась настолько удачной и универсальной, что если бы других микросхем усилителей класса D не существовало бы, мир не сильно обеднел бы. 🙂

Микросхема может работать в широком диапазоне питающих напряжений (4.5 — 26 В), развивает на нагрузке 4 Ом мощность до 2*50 Вт (U пит.=21 В); а также может быть сконфигурирована в одноканальном режиме (мощность 100 Вт).

На Алиэкспресс предлагается множество вариантов одноплатных усилителей на основе этой микросхемы.

Это могут быть самые простые варианты стереоусилителей (см. 1-ую ссылку выше, $6.5), а могут быть и усложнённые варианты со встроенным Bluetooth и регуляторами тембра (2-ая ссылка, $17).

Существуют и варианты с 2-3 микросхемами TPA3116 на борту, предназначенными для построения усилителей конфигурации 2.1 и выше.

Вместе с тем надо напомнить о «щедрости» китайских производителей, которые запросто могут присвоить усилителю 2*50 Вт мощность 2*120 Вт.

Одноплатные УНЧ на основе микросхемы TDA7498

Микросхема TDA7498, в отличие от предыдущей (TPA3116D2), предназначена для работы с более высокоомными нагрузками и при более высоком напряжении питания, которое может составлять 14 — 39 В.

Предельная мощность на нагрузке составляет до 2*100 Вт (U пит.=36 В, Rн=6 Ohm).

«Грабли» при применении этой микросхемы заключаются в том, что её производитель не гарантирует работоспособность при нагрузке 4 Ом (может срабатывать защита по току); рекомендуется нагрузка 6 или 8 Ом.

Тем не менее, китайские продавцы сплошь и рядом пишут, что усилитель якобы работает с нагрузкой от 4 Ом. Будьте бдительны!

На основе этой микросхемы выпускается различные варианты одноплатных усилителей, и совсем простых (первая ссылка выше, $8.6), и навороченных (с Bluetooth, воспроизведением с карты памяти и т.п., вторая ссылка, тоже $8.6).

Одноплатные УНЧ на основе микросхемы TPA3110 (TPA3110D2) 2×15 Вт

Когда от усилителя не требуется мощность, сокрушающая стены, то можно применить и более простые решения, например, на основе микросхемы TPA3110 (aka TPA3110D2).

Микросхема может развить мощность 2×15 Вт или 1×30 Вт в монофоническом PBTL режиме (в последнем случае для стереоусилителя потребуются две платы).

В монофоническом режиме за счет параллельного соединения каналов одновременно ещё больше становится КПД.

На ссылках выше — два варианта плат на микросхеме TPA3110D2: одна — стерео ($1.6), другая — моно $2.6).

Одноплатные УНЧ на основе микросхемы TPA3255

Микросхему TPA3255 (она же TPA3255D2) можно назвать легендарной.

Заслужила она это своими характеристиками: официальная выходная мощность (суммарная по всем каналам) заявлена на уровне 600 Вт!

Другое дело, что мне, например, не попадалось обзоров, где эта цифра подтверждалась бы. Но даже при отдаче половины мощности эта микросхема — крайне мощная.

Кроме того, возможна её гибкая конфигурация — она может работать как 4-канальная (4 канала SE), 3-канальная (2 канала SE и один канал BTL), двухканальная (2 канала BTL) и одноканальная (1 канал PBTL). Конфигурация задаётся при разводке платы и не меняется.

Недостаток каналов SE — в том, что они требуют наличия на выходе разделительного электролита, что ухудшает работу на низких частотах и увеличивает габариты усилителя.

По ссылкам выше — простая конфигурация (стерео), $44; и конфигурация 2.1 (стерео SE + басовый BTL), $40.

При работе с высокой мощностью весьма рекомендуется принудительная вентиляция.

Одноплатный УНЧ на основе микросхемы TDA8954

Все ранее рассмотренные микросхемы были в той или иной степени «идеологической» копией друг друга и не предлагали ничего оригинального.

А вот микросхема TDA8954 — «не такая, как все».

Её главное отличие — в том, что она работает от двухполярного питания!

А в этом есть два «плюса».

Первый: питать микросхему не обязательно от стабилизированного источника питания, можно и от трансформатора с отводом от средней точки во вторичной обмотке.

Второй: по постоянно циркулирующим в радиолюбительских кругах слухам, схемы с двухполярным питанием в принципе дают лучшее качество звука, чем с однополярным.

Микросхема может быть сконфигурирована как двухканальная с каналами SE (2*210 Вт), либо как одноканальная BTL с мощностью 420 Вт (задаётся при разводке платы).

По ссылке можно купить плату со стереоканалами SE по цене ок. $34.5 (с учетом доставки).

Перечисленные в подборке микросхемы — самые популярные, но в природе есть и много других, ничуть не хуже.

Можно упомянуть, например, TAS5630 (2*300 Вт, Texas Instruments), TPA3118D2 (2*30 Вт, не требует теплоотвода, Texas Instruments), PAM8610 (2*10 Вт, не требует теплоотвода, Diodes Inc.).

Читайте так же:
Вольтметр для измерения переменного напряжения

Применение усилителей класса D позволяет не только уменьшить массу и габариты аппаратуры, но и сократить потребление энергии (что очень важно для аппаратуры на автономном питании).

В тех случаях, когда в составе платы усилителя нет темброблока, есть смысл задуматься о его приобретении или сборке.

Это позволит добавить звуку окраски на низких и высоких частотах, или, попросту говоря, исправить типовые недостатки средних и дешевых звуковых колонок.

Потребуются также и корпуса для сборки полностью всей конструкции; их тоже можно подобрать и приобрести на Алиэкспресс.

Если перечисленные в подборке одноплатные усилители у других продавцов найдутся дешевле, то тоже можно брать — товар одинаковый (но надо следить за стоимостью доставки — она не всегда бесплатная).

Умное управление коллекторным мотором на U2010B 2.1

OilМажор

Прикреплен Gerber архив для заказа платы у китайцев, а также общий предварительный вид платы.

Мощность нагрузки ограничена возможностями симистора, при установке BTA41-600

8 КВт с применением радиатора для симистора.

Печатная плата «нарисована» довольно расточительно, при желании можно уменьшить в двое-трое. Текущий размер платы 68 х 49 мм. Мини-версия будет опубликована позже, когда-нибудь.

Радиодетали и компоненты:

SMD — радиодетали поверхностного монтажа, чип-компоненты.

DIP — радиодетали с «ножками»

PCB — печатная плата.

Большинство компонентов — SMD, размер 0805. Электролитические конденсаторы — SMD или DIP. Светодиод-индикатор — SMD или DIP

Диод 1N4007 — DIP корпус

Микросхема U2010B довольно редкая, но есть на Али, заказываем в SMD корпусе.

Симистор серии BTA на 600 Вольт (выбираем любой: BTA 16, 24, 41). Корпус DIP. На печатку ни BTA-16, ни BTA-41 без подгиба ножек не станут (так задумано). BTA 16 — немного раздвигаем, BTA-41 — немного сужаем. Скорее всего до 500 Вт радиатор не понадобится.

Силовые дорожки нарисованы пожирнее и продублированы с двух сторон платы, чтобы надежнее было.

Снабберная цепь для симистора. Резистор 51 Ом 2W и конденсатор 0.1 мкФ 400 В (лучше 630 В) на схеме отсутствуют, установка обязательна для индуктивной нагрузки. Параметры R и C считаем, исходя из хар-к своего симистора.

Описание и настройка. Протестировал плату — все работает, ошибок не вижу. Настройка схемы оказалась непростой, но не смертельно.

В общих чертах перед первым запуском:

  1. С3 вместо 10nF по схеме, ставим 2.2 nF .. 3.3 nF; R8 — многооборотный подстроечник 1 MOм. С С3 меньшего номинала (2.2-3.3 nF) получится настроить точнее, смотрим Datasheet на U2010B диаграмма Ramp Control.
  2. снизить сопротивление резистора R14 почти до нуля (либо шунтируем перемычкой) и тем самым расширить область регулировки переменным резистором RPM в сторону низких частот вращения
  3. на место R11временно впаиваем резистор

Далее нужно подключить вольтметр с диапазоном изме­рения 300 В к выводам двигателя, включить двигатель и на средних оборотах, зажимая вал или привод двигателя через тряпку рукой, выставить такое положение резистора R10, что­бы обороты электродвигателя не менялись при изменении нагрузки на его валу. Одновременно с этим нужно смотреть на вольтметр, подключенный к двигателю. При увеличении нагрузки на валу электродвигателя регулятор прибавляет напряжение, и двигатель крутится с одинаковыми оборота­ми, независимо от нагрузки.

Настройка перегрузки: настраивается в последнюю очередь резистором R11. Постоянный резистор номиналом 62 кОм вы­паиваем и вместо него ставим подстроенный или перемен­ный резистор номиналом

220 кОм. На оборотах двигателя чуть больше минимальных, сильно зажимая вал или привод двигателя, стараемся почти заклинить вал двигателя, и постепенно изменяем величину резистора R11, пока не начнет срабатывать защита, и не станет светиться светодиод-индикатор + срабатывание защиты. Затем из­мерьте сопротивление переменного резистора тестером и за­паяйте в устройство соответствующий резистор.

. Сначала загорается светодиод (>70%), а потом (>100%) срабатывает защита. Таким образом, подбором R6 и R11 перегрузку можно настроить на любое значение (например для мотора на 2 кВт установить защиту на 500 Вт).

Выбор резистора R14, включенного последовательно с переменным RPM, обусловлен только тем,что от значения этого резистора зависит, какие минимальные обороты обороты нужно иметь при регулировке резистором RPM. Но, этот минимум устанавливаются также с помощью подстроечного резистора R8 при выбранном значении сопротивления R14.

Время плавного пуска: играемся с емкостью C2.

3D модель платы, пустая печатка и схема:

599338821_PCB3D.thumb.PNG.b3a749e0945c4efc745d9f75c4cd3e07.PNG 858130530_PCBTop.thumb.PNG.5916abd5bf898e39860fb0385b7f211e.PNG 255831441_PCBBottom.thumb.PNG.e4203aaa7afb360301090480df61e124.PNG Schem.thumb.PNG.12f1203236cefb7667c6f6b6e5b5ccee.PNG

Реальная незавершенная плата и табличка шунта-резистора R6 для ленивых:

MC34063A описание, схема подключения.

Импульсный регулятор напряжения MC34063A (полный российский аналог КР1156ЕУ5) — специально разработанная микросхема для DC-DC преобразователей с минимальным количеством внешних элементов. Микросхема MC34063A применяется в импульсных источниках питания со входным напряжением от 3 до 40В и выходным током до 1,5А:

повышающих (Step-up converter)

понижающих (Step-down converter)

инвертирующих (Voltage inverting converter).

На практике приходилось встречаться только с вариантами источников питания

повышающих – Феликс 02К, цепь формирования 24В из 12В

понижающих – практически все фискальные регистраторы работающие от 24В, принтеры этикеток и прочее оборудование, где входное напряжение питания больше 5 вольт. Поэтому будем рассматривать только первые два варианта использования микросхемы MC34063A.

Рекомендуемая литература.

  1. Datasheet MC34063A на английском (скачать).
  2. Описание работы КР1156ЕУ5 (аналог MC34063A) на русском (cкачать).
  3. И.Л. Кольцов «33 схемы на КР1156ЕУ5» (скачать).
  4. Документ AN920/D. В данном документе приведены формулы для расчета преобразователей DC-DC на базе микросхемы MC34063. Рассмотрен принцип работы. (скачать).

Общее описание.

Мощный электронный ключ на составном транзисторе (VT1 и VT2), который соединен со схемой управления. На нее поступают импульсы синхронизации от генератора, скважность которых зависит от сигнала схемы ограничения по току. Также на схему управления подается сигнал обратной связи с компаратора. Он производит сравнение напряжения обратной связи с напряжением внутреннего источника опорного напряжения. Стабильность параметров выходного напряжения микросхемы полностью обеспечивает источник опорного напряжения, т.к. его напряжение не зависит от изменений температуры окружающей среды и колебания входного напряжения.

Рис. Расположение выводов (pinout) MC34063A

Switch Collector (VT1) Коллектор выходного транзистора.

Switch Emitter (OUT) Эмиттер выходного транзистора.

Timing Capacitor (OSC) Вывод для подключения времязадающего конденсатора.

Ground (Gnd) Общий вывод.

Comparator Inverting Input (CMP) Вход компаратора — инвертирующий .

Vcc (Uin) Напряжение питания (3. 40В).

Ipk Sense (Rt) Вход схемы ограничения тока, сюда подключается токоограничивающий резистор. Ipk пиковый ток через индуктивность, где Ipk <1.5А.

Driver Collector (VT2) Коллектор предвыходного транзистора.

Схема подключения.

Микросхема МС34063A имеет два входа, которые можно использовать для стабилизации тока.

Один вход имеет пороговое напряжение 1.25В (5 нога), что для мощной нагрузки не выгодно из-за потерь мощности. Например, при токе 1000 мА имеем потери на резисторе-датчике тока величиной 1.25*1А=1.25Вт, что сопоставимо с потерями мощности на линейном стабилизаторе.

Второй вход микросхемы имеет пороговое напряжение 0.3В (7 нога), и предназначен для защиты встроенного транзистора от перегрузки по току.

Рис. Схема понижения (Step-down converter)

Рис. Схема повышения (Step-up converter)

С2— конденсатор задающий частоту преобразования.

VD1 – быстродействующий диод, практически вся схема зависит от быстродействия этого диода. При использовании диодов Шотки, диод должен выдерживать обратное напряжение вдвое превышающее выходное напряжение.

R1 – Токовый датчик, задает максимальный ток на выходе стабилизатора. При превышении максимального тока – микросхема отключится, фактически является защитой от короткого замыкания (перегрузки) на выходе. Обладает довольно большой рассеиваемой мощностью, от 0,5 Вт до 2Вт, на практике иногда выглядит в виде нескольких параллельно включенных резисторов.

Важное замечание! Опорное напряжение токового входа микросхемы 34063 различается у разных корпусов, с разбросами от 0,25В до 0,45В. . Стандартные расчеты принимаются для опорного напряжения 0,3В. Таким образом если напряжение на шунте станет выше чем 0.3 вольта, микросхема 34063 отключится. (Например резистор R1=1 Ом, тогда при достижении U=1 Ом*0,3А=0,3В сработает защита по току и микросхема отключится. На практике это означает, что при значении резистора R1=1 Ом выходной ток источника питания будет 0,3А).

R2, R3 — делитель напряжения, с помощью которого задается выходное напряжение.

Рис. Выходное напряжение, формула расчета.

Фильтр рассмотрим отдельно, так как именно фильтр является слабым звеном при эксплуатации.

L1 – накопительная и фильтрующая индуктивность. Данную индуктивность настоятельно не рекомендуется уменьшать, так же именно эта индуктивность задает выходной ток, поэтому толщина провода довольно критичный параметр. На практике такая схема фильтра довольно редкое явление, как правило ставится второй LC фильтр, индуктивности включаются встречно.

С3 – принцип такой же как у катушки индуктивности. Несмотря на расчеты, если нет ограничения по размерам, конденсатор на 470 мкФ увидеть здесь довольно редкое явление. А вот конденсатор на 1000 мкФ здесь общепринятый стандарт (рассматриваем схемы Uвх=24В, Uвых=5В). Конденсатор должен быть LOW ESR, однако на практике это довольно редкое явление, ставится обычный конденсатор. Хотя если поднять оборудование 2000-2002 г.в. то там можно встретить LOW ESR конденсаторы в фильтре. Некоторые производители ставят в параллель ВЧ конденсатор, однако это довольно спорное решение.

Конденсатор фильтра для понижающих (Step-down converter) источников питания не является обязательным элементом, при достаточно большой индуктивности фильтра.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector