Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка в защитных газовых смесях

Сварка в защитных газовых смесях

Электросварочные работы в среде чистых газов (особенно дву-окиси углерода) в промышленно развитых странах не произво-дятся давно. Вместо них применяются многокомпонентные газовые смеси.

Для защиты сварочной дуги используются смеси на основе аргона, гелия и других технических газов. Многолетний опыт при-менения газовых смесей показывает, что смеси по ряду параметров значительно повышают качество сварного соединения по сравнению с чистыми газами. Кроме того, использование сварочных смесей позволяет снизить себестоимость сварочных работ.

1. Защитные газовые смеси для сварки плавящимся электродом

Газовая смесь К-2 (Pureshield РЗ ). Это наиболее универсальная из всех смесей для углеродисто-конструкционных сталей. Состоит из 82% аргона и 18% двуокиси углерода. Подходит практически для всех типов материалов.

Газовая смесь К-3.1 (Argoshield 5). Эта смесь состоит из 92% аргона, 6% двуокиси углерода, 2% кислорода. Разработана для листовых и узких профильных (сортовых) сталей. Дает устойчивую дугу с низким уровнем разбрызгивания, небольшим усилением и плоским гладким профилем сварного шва. Смесь превосходна для глубокого провара и идеально подходит для сварки листового металла.

Газовая смесь К-3.2 (Argoshield ТС). Это смесь 86% аргона, 12% двуокиси углерода, 2% кислорода. Дает устойчивую дугу с широкой зоной нагрева и хорошим проваром профиля, подходит для глубокого провара, сварки коротких швов и для наплавки. Может ис-пользоваться для сварки во всех положениях. Идеально подходит для ручной, автоматической и сварки с применением робота-автомата.

Газовая смесь К-3.3 (Argoshield 20). Это смесь 78% аргона, 20% двуокиси углерода, 2% кислорода. Специально разработана для глубокого провара широкого ассортимента профилей. Смесь хорошо подходит для наплавки и сварки толстых прокатных (сортовых) сталей.

Газовая смесь НП-1 (Helishield HI). Это смесь 85% гелия, 13,5% аргона, 1,5% двуокиси углерода. Данная смесь дает великолепные чистые швы с гладким профилем и незначительное, либо не дает совсем, окисление поверхности. Идеально подходит для тонких материалов, где высокая скорость прохода дает низкий уровень деформации (искривления) металла.

Газовая смесь НП-2 (Helishield H7). Это смесь 55% гелия, 43% аргона, 2% двуокиси углерода. Придает низкий уровень сварочному армированию и обеспечивает высокую скорость сварки. Смесь хорошо подходит для автоматической сварки и для применения роботов-автоматов с использованием широкого спектра толщин свариваемых материалов.

Газовая смесь НП-3 (Helishield Н101). Это смесь 38% гелия, 60% аргона, 2% двуокиси углерода. Придает стабильность дуге, что обеспечивает низкий уровень разбрызгивания и снижает вероятность появления дефектов шва. Газовая смесь НП-3 рекомендуется для сварки материалов толщиной свыше 9 мм.

Обозначение (и далее по тексту), принятое в Европе (смотри табл. 3).

От выбора защитной газовой смеси зависит качество сварки. Так, смеси, содержащие в своем составе гелий, повышают температуру сварочной дуги, что улучшает проплавление сварного шва, увеличивая производительность сварки в целом.

Данные защитные газовые смеси применимы для электродуговой сварки как углеродистых, так и легированных сталей.

2. Защитные газовые смеси для сварки неплавящимся вольфрамовым электродом

Газовая смесь НН-1 (Helishield H3). Это инертная газовая смесь, состоящая из 30% гелия и 70% аргона. Дает более эффективный нагрев, чем аргон. Увеличивается проплавление и скорость сварки, более ровная поверхность шва.

Газовая смесь НН-2 (Helishield H5). Это инертная газовая смесь, состоящая из 50% гелия и 50% аргона. Наиболее универсальная газовая смесь, подходит для сварки материалов практически любой толщины.

Газовая смесь НН-3 (Helishield H2). Это инертная газовая смесь, состоящая из 70% гелия и 30% аргона. Использование этой смеси для сварки тонких материалов может существенно понизить пористость, увеличить скорость сварки и уменьшить, или даже устранить, необходимость подогрева.

Сварка неплавящимся электродом с использованием газовых сварочных смесей применяется для соединения цветных металлов и легированных сталей.

Рекомендуемые защитные газовые смеси в зависимости от типа и толщины материала (сварка плавящимся электродом).

3. Производственные затраты и себестоимость сварочных работ

Для того, чтобы правильно оценить затраты на сварочные работы, необходим комплексный подход к решению этой задачи. Производителям сварочных работ необходимо учитывать, что затраты на сварку не ограничиваются только затратами на приобретение защитного газа и проволоки (электрода). Общая себестоимость сварочных работ складывается из следующих элементов:
в разработки технологии;

  • изготовления и подготовки материала к сварке;
  • процесса сварки;
  • зачистки и правки сваренной металлоконструкции;
  • исправления брака (если таковой имеется).

Выводы

Итак, сравнивая два способа защиты сварочной ванны (дву-окись углерода и многокомпонентные газовые смеси), можно сделать выводы в пользу применения многокомпонентных газовых смесей, так как только при этом способе защиты стало возможным:

Преимущества сварки в среде защитных газов

Среди самых эффективных способов сваривания металлов выделяется сварка в защитных газах. Специальные газы, поступающие в область сваривания, предотвращают поступление воздуха, который оказывает негативное влияние на свойства соединения материалов.

Благодаря этому сварные швы получаются чистыми (без шлака), герметичными (без пор) и соответствуют заданным характеристикам при соблюдении рекомендаций ГОСТ 14771-76.

Ручной способ и сваривание в камере

Проводимая на аппаратах полуавтоматического типа, ручная дуговая сварка в защитном газе бывает двух видов: локальная и общая в камере. Самая распространенной является локальная защита в струе инертного газа, который истекает из сопла сварочной горелки.

Местная защитная среда позволяет варить изделия любой сложности и любых габаритов, но не дает стопроцентной гарантии. Надежная защита обеспечивается только в зоне ламинарного потока газа, где возникает турбулентность, происходит захват воздуха и в этой области качество шва резко падает. Поэтому задача сварщика заключается еще и в расположении сварочной ванны в зоне ядра потока.

Организация нейтральной среды в камере обеспечивает стопроцентную защиту и позволяет получить сварной шов требуемого качества.

Читайте так же:
Как точить кухонные ножи точилкой

В камере создается избыточное давление, где размещаются свариваемые детали и аппарат для сварки с проволокой. В камерах обычно производят сварку металлов высокой химической активности, типа молибдена или титана.

Сварку в защитном газе можно проводить плавящимся электродом и с таким же успехом – неплавящимся.

Достоинства и слабые места процесса

К преимуществам работы в защитной газовой среде можно отнести следующее:

  • качество шва значительно лучше, чем при использовании обычной электродуговой сварки;
  • часть защитных газов имеют невысокую стоимость, но все же обеспечивают высочайшее качество шва;
  • освоение данной технологии сварки не представляет никаких трудностей для сварщиков имеющих опыт работы с другим технологическим оборудованием;
  • в защитных газах может производиться сварка как тонкостенных, так и толстостенных заготовок;
  • процесс сварки идет с высокой производительностью;
  • значительно упрощается работа с алюминием, цветными металлами и их сплавами, коррозионностойкой сталью;
  • технология сваривания в защитной среде легко поддается механизации и автоматизации.

Недостатки у данной технологии имеются, но не так существенны. Для работы на открытом воздухе требуются защитные экраны для предотвращения сдувания потока газа с области сваривания.

При сварке в закрытых помещениях должна быть вентиляция или обеспечено проветривание. Аргон, применяемый в сварочных работах, имеет высокую стоимость.

Какие газы применяют

Для защиты от воздействия воздуха применяют газ, которые условно разделяют на две группы инертные и химически активные.

Инертные газы всем хорошо известны – аргон, гелий и их сочетание. Вытесняя воздух из зоны окружения свариваемых заготовок, они не реагируют с металлом и не растворяются в нем.

Их применяют при сваривании алюминия, магния, титана и сплавов. В специальной литературе такой вид сварки с защитной средой из инертных газов обозначается как MIG (металл, инертный газ).

Если применять неплавящийся электрод для сварки в среде защитных газов, то такой процесс будет отлично подходить для соединения тугоплавких сталей, химически активных металлов или особо ответственных соединениях.

Сварка с активными газами получила название MAG сварки (металл, активный газ). К активным реактивам относят углекислоту, азот, водород, кислород.

Наибольшее распространение получила углекислота благодаря своей низкой стоимости. Для сравнения, азот стоит в 1,5 раза дороже, кислород в 3, водород в 4 раза, аргон и гелий в 45 и 156 раз соответственно.

В углекислоте

Сварка полуавтоматом в углекислоте получила широкое применение из-за ее дешевизны. Углекислота, попадая в область расплава, защищает его от разрушающего воздействия воздуха.

Но из-за высокой температуры в районе сварочной ванны она разлагается на окись углерода и кислород, поэтому в области сваривания оказываются три газа: углекислота, окись углерода и кислород.

Чтобы не допустить окисления, в сварочную проволоку добавляют кремний и марганец, который реагирует с кислородом раньше железа. За счет этого гасятся реакции образования вредных окисей.

При этом углекислый газ сохраняет свои изолирующие свойства, а соединения кремния и марганца вступают в реакцию друг с другом, в результате чего получается легкое по плотности вещество, которое всплывает в расплаве. Образовавшийся шлак впоследствии легко удаляется.

Перед использованием углекислоты нужно обязательно удалить воду из баллона. Для этого его переворачивают и сливают воду, через 20 минут процедуру повторяют, в противном случае пары воды вызовут пористость шва.

В азотной среде

Азот используют при сваривании деталей из меди и нескольких видов нержавеющей стали. Это обусловлено тем, что азот не реагирует с медью. В качестве электродов используются графитовые или угольные прутки, применение вольфрамовых прутков приводит к их перерасходу из-за образования легкоплавких соединений.

Работают на токах 150-500 А и напряжении дуги 22-30 В. Расход азота находится в пределах 3-10 л/мин. Газ хранится в баллонах при давлении 150 атмосфер.

Сварочное оборудование ничем не отличается от других видов сварки использующих газы, только в горелке предусмотрено специальное крепление для угольного электрода.

Оборудование

В аппаратуре для производства сварочных работ в защитной среде в качестве источника питания чаще всего используют инверторы с широкой регулировкой величины сварочного тока.

Они снабжены устройством подачи сварочной проволоки и газовую систему с баллонами, шлангами, понижающими редукторами. Сварку плавящимся электродом в защитных газах ведут постоянным или импульсным высокочастотным током.

Главными параметрами, характеризующими оборудование, является ток, который можно изменять; напряжение для зажигания и стабильного горения дуги; скорость подачи проволоки, ее толщина. Режимы сварки полуавтоматом многообразны. В зависимости от свариваемых материалов сила тока и другие параметры могут значительно меняться.

Перед началом сварочных работ в защитном газе свариваемые поверхности требуется очистить от всевозможных загрязнений. В первую очередь необходимо очистить кромки от оксидной пленки, ржавчины, жира, масла. Для этого применяются стальные скребки, растворители, нетканые материалы.

Применение защитных газов требует соблюдения определенной последовательности операций. Сначала подается защитный газ, затем включается источник питания, начинает подаваться присадочная проволока и зажигается дуга, потом только начинается процесс сварки.

После гашения электродуги, еще 10-15 секунд в зону сварки подают инертный газ. Это делается для того, чтобы избежать пагубного влияния атмосферы на шов.

В зависимости от видов свариваемых металлов, их толщины используют различные защитные газы. Например, аргон обеспечивает стабильность электрической дуги, а гелий позволяет получать более глубокую проварку шва.

При сварке меди используется водород. Наиболее универсальным газом, который может использоваться практически при сварке любых металлов является аргон. Только его высокая стоимость вынуждает применять более дешевые газы типа углекислого или азота.

Как и электродуговую, в автоматическом режиме применяют технологию сварочного процесса в газовой среде. Она легко поддается автоматизации и используется в роботизированных комплексах в больших производствах. Полуавтоматы широко применяются в мелких мастерских и автосервисах.

Читайте так же:
Домофон своими руками в частном доме

Изучение оборудования для механизированной сварки в среде защитных газов: Лабораторная работа

1. Технология и режимы для механизированной сварки в среде защитных газов.

2. Изучение оборудования для механизированной сварки в среде защитных газов.

Технология и режимы механизированной сварки в среде защитных газов.

При сварке конструкционных судостроительных сталей в каче­стве защитного газа наиболее широко применяют углекислый газ (СО2). В настоящее время разработаны технология и режимы ме­ханизированной сварки в среде СО2 для всех основных марок ма­лоуглеродистых и низколегированных сталей любых толщин. Ме­ханизированную сварку можно осуществлять тонкой электродной проволокой (dЭ =0,8÷1,4 мм) во всех пространственных положе­ниях с использованием полуавтоматов типа А-547Р, ПДПГ-300, «Гранит», «Нева» .

Сварку можно осуществить и при большом диаметре электрод­ной проволоки (dЭ= 1,6÷2 мм), на так называемых «форсирован­ных» режимах. В этом случае сварку ведут либо с применением полуавтоматов — ПДПГ-ЗОО, «Гранит», «Нева», либо автоматами АДПГ-500. В последнем случае сварку можно производить только в нижнем положении. При сварке в СО2 обязательно применение электродной проволоки, содержащей повышенное количество мар­ганца и кремния, марок Св-08ГС или Св-80Г2С.

В зависимости от диаметра электродной проволоки шов формируется так же как при ручной сварке, в основном, либо за счет электродного металла (dЭ=0,8÷1,2мм), либо при большой доле участия основного металла (dЭ=1,6÷2мм), т.е. так же как при механизированной сварке под флюсом.

В связи с отмеченной особенностью подготовку кромок при сварке проволокой dЭ=0,8 ÷ 1,2 мм производят как для ручной сварки, т.е. по ГОСТ 5264-69, а при сварке проволокой dЭ=1,6 ÷ 2 мм, как для сварки в защитных газах, т.е. по ГОСТ 14771-69.

Угловые швы тавровых соединений сваривают проволокой dЭ=1,0-1,2 мм, на режиме: Iсв=160 ÷ 180А; Uд=20 ÷ 22В. При катете до 8 мм сварку выполняют за один проход, а при катете 9-12 мм — за 2-3 прохода. Швы катетом до 5 мм сваривают сверху вниз, а швы большого катета — снизу вверх.

Расход углекислого газа составляет 500-600 литров в час при сварке стыковых и 300-400 – при сварке угловых швов.

Сварка в защитных газах.

Защитными газами при сварке высоколегированных сталей служат главным образом аргон и гелий или их смеси. Значительно реже используется углекис­лый газ. При сварке в инертных газах применяются как неплавящиеся (вольфрамовые), так и плавящиеся электроды и сталь­ная проволока. Сварка в углекислом газе производится только плавящимся электродом из высоколегированной проволоки.

В процессе сварки неплавящимся электродом нельзя зажи­гать, дугу коротким замыканием, так как в этом случае неиз­бежно попадание вольфрама в сварочную ванну, а следова­тельно, и в шов. Для зажигания дуги следует подать высокое напряжение, например, осциллятором. Под действием высокого напряжения воздушный промежуток ионизируется.

Сварка плавящимся электродом производится на постоян­ном токе обратной полярности; при сварке неплавящимся элект­родом полярность прямая. Сварка плавящимся электродом выполняется на автоматах и полуавтоматах; сварка неплавящимся электродом в большинстве случаев ручная, но могут при­меняться различные способы механизированной сварки.

Перенос металла при аргонно-дуговой сварке плавящимся электродом должен быть струйным, а не капельным, для чего повышается плотность тока выше критической. В процессе сварки проволокой диаметром 1 мм струйный перенос наступает с увеличением силы тока свыше 190 А, для проволоки диамет­ром 1,6 мм — свыше 240 А, а диаметром 2мм — свыше 320 А.

Оборудование.

Автомат А-433М – механизированный автомат для электрошлаковой сварки. Он разработан применительно к условия изготовления судостроительных конструкций. Это одноэлектродный автомат (диаметр проволоки 3 мм), перемещающийся на вертикальной плоскости по монорельсу с зубчатой рейкой. Автомат оснащен двумя моторам: один для подачи электродной проволоки, другой для перемещения каретки. К недостаткам автомата следует отнести: его громоздкость (масса- 75 кг), Трудность подхода и осмотра сварного соединения в месте сварки, необходимость приварки рельса с зубчатой рейкой. Исходя из этого на судостроительных заводах заменяют автомат А – 433М другим – «Ингул» для сварки с принудительным формированием в среде углекислого газа.

Автомат А-820М, общий вид которого показан на рис.38, обладает некоторыми преимуществами по сравнению с автоматом А-433М: он более компактен, имеет массу 20 кг, перемещается по угольнику размером 45×45×5 мм.

Для изготовления сварных судовых конструкций большой толщины (наружная обшивка), а также в котло- и турбостроении целесообразно использовать автомат с плавящимся мундштуком, например А-1304.

Сварочные полуавтоматы.

Сварочные полуавтоматы отличаются от сварочных автоматов тем, что в них механизирована лишь подача электродной проволоки. Поддерживание длины дугового промежутка (напряжения на дуге) и перемещение дуги выполняется сварщиком вручную. Для повышения маневренности и удобства работы держатель с головкой полуавтомата соединен с подающим механизмом специальным шлангом, по которому электродная проволока подается в зону дуги. Существуют три разновидности шлангов: с толкающим, тянущим (рис, 40, а и б) и «тяни-толкающим» механизмом. Порошковая проволока, прово­лока из титана и алюминия нуждаются в шланге с повышенным толкающим усилием; Для проволоки малого диаметра (менее 0,8 мм) требуется шлонги с механизмом тянущего типа. Наконец, механизмы «тяни-толкающего» типа применяют в случае использования шлангов повышенной длины.

Для полуавтоматической сварки под флюсом в судостроении находит применение главным образом полуавтомат ПШ-54, реже –ПДШ-500. На рис 41и 42 показаны держатели обоих полуавтоматов. В полуавтомате ПШ-54 флюс насыпается в воронку, расположенную на держателе; из воронки при открытом флюсовом затворе флюс высыпается в зону сварки.

Полуавтомат ПДШМ-500 конструктивно отличается от полу­автомата ПШ-54 тем, что у него флюс подается в зону сварки из специального бункера по резиновой трубке параллельно со шлангом для подачи проволоки. Трубка соединена с флюсоприемником, размещенным в головке держателя.

Читайте так же:
Инвертор напряжения 12в 220в

На судостроительных заводах, особенно в судовом корпусостроении, широко применяется полуавтоматическая сварка в защитных газах (как активных, так и инертных). С этой целью на заводах отрасли используют полуавтоматы разного назначения.

Для сварки стальных конструкций в углекислом газе при толщине металла до 3 мм и угловых швов катетом до 4 мм при­меняют полуавтомат А-547, для сварки стали толщиной от 3 мм и выше — полуавтомат А-537. Кроме того, широко распростра­нены полуавтоматы ПДПГ-500 для сварки в углекислом газе и ПШП-10 — для сварки в инертных газах, а также полуавтома­ты «Гранит» и «Нева».

Полуавтомат А-537 принципиально не отличается от других полуавтоматов. Установка состоит из механизма подачи про­волоки с отсекателем газа и кассетой для электродной прово­локи, шлангового держателя, шкафа управления, сварочного преобразователя, баллона с углекислым газом, подогревателя газа, редуктора, сварочного провода и проводов управления.

Полуавтомат ПДПГ-500, предназначенный для сварки в уг­лекислом газе проволокой диаметром 0,8—2 мм, включает ме­ханизм подачи проволоки, представляющий собой цилиндриче­ский редуктор, передающий вращение от электродвигателя к подающим роликам. Механизм подачи оснащен двумя па­рами ведущих и прижимных роликов. Редуктор имеет две ше­стерни, которые можно менять местами, а тем самым регули­ровать скорость подачи проволоки. Полуавтомат оснащен дву­мя горелками на силу тока 150и 500 А. В комплект полуав­томата входит также шкаф управления и барабан для элект­родной проволоки.

Для судостроения, особенно в условиях стапеля, представ­ляет интерес полуавтомат ранцевый ПДГ-304. С помощью этого полуавтомата можно сваривать короткие швы, расположенные в различных местах и в разных пространственных положениях, Механизм подачи проволоки, катушка и пульт управления смонтированы на пластмассовой пластине, снабженной ранце­выми ремнями для переноски на спине. Это позволяет пользо­ваться коротким шлангом; повышается надежность подачи проволоки.

Оборудование для сварки в среде защитных газов

Электродуговая сварка в среде защитных газов находит все более широкое применение в промышленности.

В последние годы ленинградскими новаторами-сварщиками разработано множество конструкций оборудования, сварочных горелок и приспособлений, обеспечивающих повышение производительности и качества сварки, снижение расходов дефицитного вольфрама, экономию защитного газа и улучшение условий труда.

Ниже приводятся наиболее интересные разработки, внедренные в производство.

Новаторами завода «Электрик» предложен ряд полуавтоматов, собираемых из унифицированных узлов. Один из полуавтоматов приведен ниже.

Сварочный полуавтомат ПДГ-502 (рис. 25), разработанный новаторами С. А. Голубьевой и А. А. Ляховым, предназначен для сварки деталей в среде углекислого газа стальным плавящимся электродом при различных пространственных положениях свариваемого стыка. Полуавтомат состоит из Сварочного выпрямителя ВДУ-504-1, пульта управления, подающего механизма, газовой аппаратуры и сварочных горелок.

Полуавтомат надежен в работе и позволяет осуществлять сварку с высокой производительностью.

Номинальное напряжение питающей сети, В . 220 и 380
Номинальный сварочный ток при ПВ 60%, А . 500
Пределы регулирования сварочного тока, А 100—500
Скорость подачи электродной проволоки, м/ч 120—1200
Диаметр электродной проволоки, мм . . 1,2—2
Расход защитного газа, л/ч. 600—1500
Расход охлаждающей воды, л/ч. 100—200
Масса, кг:
сварочной горелки на 500 А. 1,2
сварочной горелки на 315 А. 0,8
подающего механизма. 13
пульта управления. 1

Годовой экономический эффект от внедрения полуавтомата составляет 2,2 тыс. рублей.

Тиристорный инвертор «Импульс-3А» для сварки алюминия и его сплавов. Аргоно-дуговая сварка алюминия и его сплавов неплавящимся (вольфрамовым) электродом обычно осуществляется с помощью промышленных установок на переменном токе с частотой 50 Гц, при котором в процессе сварки при обратной полярности (минус на основном металле и плюс на электроде) происходит разрушение окисной пленки.

В процессе сварки применяют специальные устройства— осцилляторы или генераторы синхронных импульсов со сложной электрической схемой, обеспечивающие повторное зажигание дуги при переходе тока и напряжения через ноль.

Тиристорный инвертор «Импульс-ЗА», разработан ный новатором Н. Т. Мельниченко, устраняет подо статки существующих установок. Особенностью данного инвертора является то, что он преобразует постоянный сварочный ток в переменный с импульсами прямоугольной формы. Этим достигается высокая стабильность горения дуги, так как время перехода тока и напряжения через ноль в инверторе соизмеримо с временем деионизации заряженных частиц в столбе дуги. Стабилизации дуги способствует форсирующий импульс от перезарядки коммутирующей емкости, который находится в начале каждого полупериода.


Рис. 25. Сварочный полуавтомат ПДГ-502.


Рис. 26. Электрическая схема тиристорного инвертора.

При отсутствии дуги напряжение форсирующих импульсов равно 100— 150 В, что облегчает также зажигание дуги.

Инвертор обеспечивает раздельное регулирование длительности и амплитуды полупериодов обеих полярностей. При сварке металла большой толщины (до 20 мм) относительное содержание в металле шва окисных пленок невелико, поэтому длительность и амплитуду тока прямой полярности увеличивают. Если же необходимо сваривать тонкий металл, то увеличивают длительность полупериода обратной полярности. Регулированием амплитуды тока обратной полярности достигается уменьшение степени плавления вольфрамового электрода.

Тиристорный инвертор, электрическая схема которого показана на рис. 26, состоит из трех блоков: силового (СБ), защиты (БЗ) и управления (БУ).

Силовой блок включает в себя инвертор на четырех тиристорах (Т1—Т4), систему охлаждения и пуска. Питание инвертор получает от сварочного генератора постоянного тока.

Принцип работы инвертора построен на одновременном попарном включении тиристоров Т1 и Т4 или Т2 и ТЗ. Гашение токопроводящих тиристоров производится при помощи батареи конденсаторов (С=160Х Х9 мкФ), включающейся навстречу проводящим тиристорам. Емкость способствует также ускоренному переходу сварочного тока через ноль.

Блок защиты предохраняет тиристоры от перегрузки. Это достигается тем, что БЗ контролирует импульсы тока перезаряда коммутирующей емкости и отключает цепь возбуждения сварочного агрегата при их прекращении.

Блок БУ осуществляет поочередное открытие и закрытие тиристоров Т1, Т4 и Т2, ТЗ с регулируемой частотой переключения и длительностью включенного состояния.

Читайте так же:
Вход телефонной линии rj 11

Схема БУ представляет собой генератор импульсов на тиристорах и динисторах. Раздельное регулирование амплитуд импульсов прямой и обратной полярности достигается при помощи балластных реостатов тип РБ300, при этом силу сварочного тока рекомендуется регулировать, не снижая напряжения генератора.

Для регулировки режима,- при котором происходит хорошее разрушение окисной пленки и предотвращается плавление электрода, на передней панели предусмотрена ручка «Баланс».

Регулирование частоты изменения полярности типа сварочной дуги производится ручкой «Частота».

Ток коммутации, А. . 250
Регулируемая частота, Гц. 7—24
Длительность переключения полярности, мкс. 0,5
Потребляемая мощность, кВт. 0,5
Габаритные размеры, мм. 300×6^0x430
Масса, кг. 40

Тиристорный инвертор «Импульс-ЗА» может быть эффективно использован также при сварке черных металлов, особенно для получения вертикальных и потолочных швов.

Передвижная установка УРС-62А для сварки алюминия. Сварка алюминиевых конструкций в полевых условиях требует применения простых и надежных в эксплуатации установок. Этими качествами обладает передвижная установка УРС-62А, автором которой является Н. Т. Мельниченко.


Рис. 27. Принципиальная электрическая схема передвижной установки УРС-62А.

Установка выполнена в виде одноосного автоприцепа с подрессоренной рамой. На раме размещено сварочное оборудование: электроприборы, система охлаждения горелки, газовая система и приборы контроля. Имеются отсеки для хранения ацетона, проволоки, вольфрама, едкого натра, азотной кислоты и т. п. Сварочный и управляющий кабели вместе с газовым шлангом находятся на кронштейнах в специальном отсеке.

Принципиальная электрическая схема установки показана на рис. 27. Установка питается от сети переменного тока 380 В и включается установочным автоматом В1 типа АЗ 124, имеющим тепловую защиту. В установке использованы сварочный трансформатор типа СТЭ-34 без регулятора тока, балластный реостат РБ-300, осциллятор типа ОСПЗ’2М и приборы управления и контроля.

Особенностью установки является то, что осциллятор размещен в специальном переносном ящике на расстоянии 1,5—2 м от аргоно-дуговой горелки. Это дало возможность увеличить длину сварочных проводов до 40 м без потери характеристики осциллятора, что особенно важно в полевых условиях монтажа.


Рис. 28. Схема модернизации электрических цепей выпрямителей ВД-301 и ВКС-500.

В установке применена горелка АР

9, в которой металлическое сопло заменено керамическим, снят газовый клапан и установлен тумблер В6 дистанционного управления.

При включении тумблера В6 срабатывает реле РП, питающееся напряжением 46 В от маломощного трансформатора 777, и через пускатель ПМ включаются сварочный трансформатор ТС, осциллятор и. электрогазовый клапан ЭГК, расположенный в системе подачи защитного газа. Эта система включает в себя баллон с аргоном, редуктор, клапан ЭГК, ротаметр, ресивер емкостью 2 л, регулировочный вентиль и резиновые шланги. Система обеспечивает поступление аргона в горелку в зависимости от длины шланга в течение 8—15 с. С целью сокращения времени поступления газа в зону сварки тем же автором разработана новая конструкция горелки (см. рис. 38).

Модернизация источников постоянного тока при сварке титана. Чтобы обеспечить надежную защиту сварных швов от окисления при сварке титана, необходимо после отключения горения дуги еще некоторое время подавать защитный газ в зону нагретого шва. Это можно осуществить в том случае, если гашение дуги производить не отрывом электрода, а отключением тока с помощью контакторов. Однако такими контакторами снабжены лишь специальные посты для сварки титана типа ПРС-ЗМ.

В сварочной лаборатории треста «Союзпромбуммонтаж» разработаны и внедрены модернизированные электрические схемы промышленных сварочных выпрямителей ВД-301, ВКС-500, ВДУ-504 и ВД-502, а также сварочных преобразователей ПСО-500, ПСУ500 и ПСО-ЗОО для сварки труб и других изделий из титана.

Модернизация электрической схемы для выпрямителей ВД-301 и ВКС-500 показана на рис. 28 (пунктирные линии); присоединительные концы для схемы выпрямителя ВД-301 указаны в скобках. При модернизации изолируют подвижные элементы контакторов ветрового реле Р2 (РКВ), а неподвижные элементы ветрового реле 19 (24) и В22 (29) выводят на нормально разомкнутые контакты дополнительного реле 1Р на напряжение 36 В. Реле запитывают от дополнительно встроенного трансформатора ТР напряжением 380/36 В мощностью 0,26 кВт. Цепь вторичной обмотки трансформатора и реле Р замкнуты через микровыключатель MB.

Работа электрической схемы происходит следующим образом. При замыкании кнопки микровыключателя MB замыкаются цепь катушки реле Р и нормально разомкнутые контактные реле 1Р, при этом запитывается катушка пускателя Р1, благодаря чему происходит замыкание силовых контактов контактора 1Р, и в сварочной цепи выпрямителя появляется напряжение, необходимое для возбуждения сварочной дуги. Так как кнопка микровыключателя MB размещена на рукоятке сварочной горелки, то при ее размыкании происходит отключение электрической цепи возбуждения сварочной дуги и прекращение ее горения,, без отрыва электрода от изделия.


Рис. 30. Схема модернизации электрической цепи выпрямителя ВД-502.

Модернизация электрической схемы сварочного выпрямителя ВДУ-504 показана на рис. 29. В схеме контактные клеммы 95 и 96 кнопки включения КиП2 выпрямителя, расположенные на пульте управления, выведены на микровыключатель MB, а контакты блокировочного устройства заизолированы. При замыкании и размыкании кнопки микровыключателя МБ происходит включение и отключение электрической цепи возбуждения сварочной дуги при постоянно работающем вентиляторе.

В электрической схеме выпрямителя ВД-502 (рис. 30) концы тумблера ВЗ выведены на микровыключатель MB, которым и производится управление работой выпрямителя при выключенном ВЗ. Вентилятор, как и в ранее описанных устройствах, работает независимо от положения кнопки MB.


Рис 31. Схема модернизации электрической цепи сварочных преобразователей ПС0500, ПСУ-500 и ПСУ-30.

Схема подключения преобразователей ПС0500, ПСУ-500 и ПСУ-300 при использовании их при сварке титана показана на рис. 31. Отключение и включение напряжения в сварочной цепи достигается за счет отсоединения провода от подвижного контакта реостата обмотки возбуждения. Для этого к одной клемме микровыключателя MB на сварочной горелке присоединен провод обмотки возбуждения, а к другой — провод к реостату, при этом независимо от положения кнопки микровыключателя вращение системы двигатель — генератор происходит непрерывно и прекращается только после отключения пакетного выключателя.

Читайте так же:
Залежи урана в россии

Виды, плюсы и минусы автоматической сварки

Автоматическая сварка – высокотехнологичный процесс, который характеризуется самостоятельным образованием и поддержанием дуги. Мы расскажем об особенностях работы оборудования, их видах, и главных отличиях от автоматической сварки.

Автоматический сварочный аппарат

Автоматическая сварка – высшая степень механизации электродуговой сварки. Сварка автомат характеризуется самостоятельным образованием и поддержанием дуги. Система управления контролирует скорость и дозировку подачи расходных материалов, а также направление движения дуги. В этом состоит главное отличие от полуавтоматической технологии.

Что такое сварка-автомат, отличия от полуавтомата

Благодаря полному контролю сварочного процесса автоматическая сварка получила наибольшее распространение на предприятиях, специализирующихся на массовом производстве. По своей сути сварка-автомат – это сочетание электромеханического оборудования с электронным управлением, среди которых важнейшей деталью является сварочная головка. С ее помощью происходит подача расходных материалов в область соединения, производится дуговая сварка, резка или напыление, осуществляется контроль над сварочным процессом и своевременностью его остановки.

Дополнительная информация. По своей конструкции головки делят на два типа: подвесные и самоходные. Первые отличаются отсутствием устройства для перемещения головки. Поэтому движение дуги происходит за счет передвижения соединяемых элементов. Самоходная головка способна самостоятельно перемещаться над зоной сварки с помощью специальных приводов.

На самом деле разница между технологиями несущественна. Степень механизации процесса – вот чем отличается автомат от полуавтомата. Относительная простота конструкции выгодно отличает полуавтоматические сварочные аппараты. Они оборудованы автоматическим устройством подачи сварочной проволоки на электродный держатель через гибкий рукав. Сварщик осуществляет управление за движением дуги, направляя ее в нужную сторону.

Автоматический сварочный аппарат

Таким образом, технология, при которой проволока подается в автоматическом режиме, а дуга перемещается оператором, получила название полуавтоматической.

Виды автоматических аппаратов

  1. Тракторного типа. Для работ под слоем флюса или в среде защитных газов.
  2. Подвесной сварочный автомат. Для работы в среде защитных газов.
  3. Многодуговой аппарат. Существуют модификации как тракторного, так и подвесного исполнения.

Тракторный тип

Первый тип аппаратов был разработан и выпущен в СССР. Требования к конструкции регламентированы ГОСТ 8213-69. Широко применяется в тяжелой промышленности.

Сварочный трактор

В качестве примера рассмотрим устройство одномоторного трактора типа ТС-17-Р. Как следует из названия, трактор имеет только один электродвигатель. Он разработан для выполнения работ под слоем флюса при сварке различных стыковых швов. При этом минимальный радиус кольцевых швов составляет 600 мм.

С помощью электродвигателя приводятся в движение ходовой механизм, а также устройство подачи проволоки. Все три элемента имеют общий корпус, который является несущей конструкцией трактора. Он служит опорой прочим механизмам: загрузочному бункеру для флюса, барабану с проволокой и управляющему блоку.

Электрод располагается вблизи вертикальной оси, которая проходит через центр тяжести. Данная особенность позволяет производить работы внутри емкостей: низкое расположение центра тяжести обеспечивает повышенную устойчивость.

Подвесной сварочный аппарат

  1. Подающее устройство.
  2. Приводной суппорт.
  3. Механизм вертикального передвижения.
  4. Флюсовый бункер.
  5. Проволочный барабан.
  6. Блок управления.

Подвесной сварочный аппарат

Подвесное оборудование разделяют на стационарные и самоходные агрегаты.

Стационарные устройства отличаются тем, что перед началом работ их устанавливают на выбранное место и не перемещают до окончания работ. Основная сфера применения – соединение труб. Самоходные аппараты оснащены тележкой для перемещения по рабочей площадке. Отличаются способностью к созданию неразъемных соединений значительной длины.

Принцип и технология выполнения работ

  • устройства подачи и перемещения;
  • токопроводные элементы;
  • самодвижущаяся тележка;
  • блок управления.

Она обеспечивает подачу сварочной проволоки либо прочих электродных материалов, после чего осуществляет подачу тока.

Вспомогательная аппаратура, к которой относятся механизм подачи защитного газа либо флюсовое оборудование.

Особенности механизма подачи проволоки имеют конструктивную схожесть с аналогичным приспособлением полуавтоматических аппаратов.

Токопроводящий механизм называют горелкой либо мундштуком. Встречаются различные варианты исполнения, которые имеют общее принципиальное устройство – направляющую трубку с вкрученным токопроводным элементом. Трубка посредством сапожковой вилки на шарнире соединяется с прижимным механизмом. Для повышения периода эксплуатации вилка снабжена вставкой из высокопрочного материала. Прижимной механизм представляет собой винт с пружиной.

Автоматический сварочный аппарат

Для автоматической сварки под флюсом рекомендуем использовать источники энергии с пологопадающими характеристиками. При выполнении работ в газовой среде предпочтительнее будут источники с жесткими характеристиками.

Для орбитальных сварных работ используют аппараты с асинхронными двигателями постоянной частоты. Благодаря реализации принципа саморегуляции скорость подачи электродов остается неизменной.

На конвейерных линиях сварочное оборудование работает согласно единому технологическому циклу, который может содержать устройства для предварительной или последующей обработки материалов в зависимости от специфики производства.

Плюсы и минусы сварочных автоматов

  1. Качество соединения. Использование электронных систем позволяет добиться высоких показателей целостности и повторяемости шва.
  2. Производительность. Благодаря высокой скорости автоматические линии значительно превосходят возможности бригады квалифицированных сварщиков.
  3. Количество отходов. При условии грамотной настройки использование автоматических аппаратов позволяет минимизировать количество лома.
  4. Трудозатраты. Применение данной технологии позволит перенаправить трудовые ресурсы на другие производственные участки. Кроме того, можно не учитывать человеческий фактор при планировании работ.
  1. Высокая стоимость оборудования.
  2. Низкая маневренность сварочных агрегатов.
  3. Трудности при реорганизации производства.

Технология автоматической сварки не стоит на месте. Несмотря на то что автоматизация производства, как правило, оказывает положительное влияние на предприятие, перед ее внедрением следует трезво оценить целесообразность модернизации. Это не всегда выгодно. Именно по этой причине автоматическая сварка не получила повсеместного применения. Если вы имеете опыт успешного внедрения автоматической сварки на производстве, поделитесь им в комментариях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector