Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка в микроэлектронике

Сварка в микроэлектронике

Метод соединения микросхем должен удовлетворять следующим требованиям: прочность соединения должна быть близка к прочности соединяемых элементов микросхем; соединение должно иметь минимальное омическое сопротивление; основные параметры процесса соединения (температура нагрева, удельное давление и длительность выдержки) должны быть минимально возможными, с тем чтобы не повреждались элементы схемы; выполнять соединение материалов разнообразных сочетаний и типоразмеров; после соединения не должно оставаться материалов, вызывающих коррозию; качество соединений должно контролироваться простыми и надежными методами. Из общеизвестных способов сварки при производстве микроэлектронных схем применяют контактную точечную, ультразвуковую, холодную, диффузионную, электронно-лучевую, лазерную, аргонодуговую и микроплазменную.

Специально для целей монтажа микросхем разработано несколько оригинальных способов микросварки давлением: термокомпрессия, сварка давлением с косвенным импульсным нагревом (СКИН), ультразвуковая сварка с косвенным импульсным нагревом (УЗСКН), односторонняя контактная сварка (точечная и шовная).

Метод соединения микросхем должен удовлетворять следующим требованиям: прочность соединения должна быть близка к прочности соединяемых элементов микросхем; соединение должно иметь минимальное омическое сопротивление; основные параметры процесса соединения (температура нагрева, удельное давление и длительность выдержки) должны быть минимально возможными, с тем чтобы не повреждались элементы схемы; выполнять соединение материалов разнообразных сочетаний и типоразмеров; после соединения не должно оставаться материалов, вызывающих коррозию; качество соединений должно контролироваться простыми и надежными методами. Из общеизвестных способов сварки при производстве микроэлектронных схем применяют контактную точечную, ультразвуковую, холодную, диффузионную, электронно-лучевую, лазерную, аргонодуговую и микроплазменную.

Специально для целей монтажа микросхем разработано несколько оригинальных способов микросварки давлением: термокомпрессия, сварка давлением с косвенным импульсным нагревом (СКИН), ультразвуковая сварка с косвенным импульсным нагревом (УЗСКН), одно- сторонняя контактная сварка (точечная и шовная).

Термокомпрессия — способ соединения металлов с металлами и неметаллами давлением с подогревом при относительно невысоких удельных давлениях.

По терминологии, принятой в сварке, более правильно термокомпрессию называть микросваркой давлением с подогревом соединяемых деталей.

Один из соединяемых материалов (обычно вывод) при термокомпрессии должен обладать достаточно высокой пластичностью. Температура при термокомпрессии не превышает температуры образования эвтектики соединяемых материалов и обычно равна температуре отпуска или отжига более пластичного металла.

Термокомпрессией можно соединять мягкие высокоэлектропроводные материалы в виде круглых и плоских проводников с полупроводниковыми материалами и электропроводными тонкими пленками, напыленными на хрупкие диэлектрические подложки.

Термокомпрессия является наиболее распространенным способом монтажа полупроводниковых микроприборов и интегральных схем в разнообразных корпусах гибкими проволочными проводниками.

Основными параметрами режима термокомпрессии с использованием статического нагрева являются усилие сжатия (давление р), температура нагрева соединения или инструмента Т, длительность выдержки под давлением t.

Выбор давления определяется допустимой деформацией присоединяемого проводника и допустимым механическим воздействием на полупроводниковый прибор.

Усилие сжатия выбирают в зависимости от пластичности проводника, сочетания свариваемых материалов, диаметра проволоки и торца инструмента.

Давления при сварке алюминиевого проводника составляют 4—8 кгс/мм2 и при сварке золотого проводника 10—14 кгс/мм2.

Длительность выдержки устанавливается в зависимости от сочетания свариваемых материалов и определяется экспериментально путем оценки прочности соединений и может колебаться от 0,1 с до нескольких секунд.

Сварка давлением с косвенным импульсным нагревом (СКИН). Способ можно с успехом применять при монтаже гибридных интегральных схем. Он находит широкое применение в интегральных микросхемах, которые не допускают общего разогрева. Этим способом можно сваривать золотые, алюминиевые и медные проводники диаметром 20—100 мкм с разнообразными пленками, напыленными на диэлектрические или полупроводниковые подложки. При правильно подобранном режиме можно обеспечить высокое качество соединений и достаточно хорошую стабильность.

Односторонняя контактная сварка — распространенный способ соединения различных электронных компонентов.

При односторонней точечной контактной сварке один электрод прижимает проволоку или ленту к контактной площадке, а второй электрод служит для подвода сварочного тока к контактной площадке. Этот способ применяют для сварки весьма тонких проводников (круглых и плоских) с относительно толстым материалом и для сварки проводников с электроосажденными пленками толщиной около 20 мкм.

Для присоединения круглых и плоских выводов навесных элементов к тонким пленкам на хрупких подложках и к печатному монтажу применяют контактную сварку сдвоенным электродом и сварку строенным электродом трехфазным током.

При односторонней сварке сдвоенным или строенным электродом электроды устанавливают на верхнюю привариваемую деталь (проволоку, ленту) и прижимают к нижней детали. Таким способом можно с успехом приваривать проводники диаметром от 20 до 150—250 мкм из Аи, Сu, Ag и других металлов к тонким пленкам на керамических подложках.

Одностороннюю шовную сварку коническими роликами применяют для герметизации металлостеклянных и металлокерамических корпусов микросхем металлическими крышками.

Ультразвуковая микросварка и комбинированные способы сварки успешно используются при изготовлении гибридных схем, транзисторов и интегральных схем. В микроэлектронике используются следующие способы ультразвуковой и комбинированной микросварки: сварка продольными и продольно-поперечными колебаниями; сварка крутильными колебаниями; сварка с косвенным импульсным нагревом (УЗСКН); термокомпрессия с ультразвуком.

Основными параметрами процесса при ультразвуковой микросварке являются амплитуда колебаний, рабочего торца, инструмента, которая зависит от электрической мощности преобразователя и конструктивного исполнения колебательной системы; усилие сжатия свариваемых элементов; длительность включения ультразвуковых колебаний. При комбинированном методе сварки (УЗСКН) регулируемыми параметрами также являются температура нагрева инструмента или изделия, время относительного смещения импульса ультразвука и нагрева. Процесс ультразвуковой микросварки продольными и продольно-поперечными колебаниями характеризуется малыми амплитудами колебаний (1 —10 мкм) и относительно большими удельными давлениями (0,5—1 σc свариваемого материала).

Ультразвуковую микросварку применяют для выполнения монтажа гибкими проводниками, присоединения кристалла к корпусу, беспроволочного монтажа интегральных схем методом «перевернутого кристалла», присоединения плоских выводов к кремниевым кристаллам диодов.

Холодная сварка осуществляется за счет пластической деформации свариваемых деталей под действием давления без дополнительного подогрева. Для получения высококачественного сварного соединения при холодной сварке необходимо обеспечить точную сборку и чистоту свариваемых поверхностей и необходимую степень деформации, зависящую от соединяемых металлов (от 35% для сочетания золото + золото до 80% для сочетаний медь + медь, медь + ковар и ковар + ковар.) В микроэлектронике этот способ применяется для герметизации металлостеклянных корпусов приборов.

Микросварка давлением с образованием эвтектики заключается в нагреве деталей до температуры образования эвтектики соединяемых материалов при одновременном сжатии и подаче колебаний (при необходимости). Способ наиболее приемлем для непосредственного присоединения плоских золоченых выводов к полупроводниковым кремниевым кристаллам, если требуется сравнительно большая площадь контакта (0,2—2 мм2), при соединении кристаллов интегральных схем с золоченой поверхностью корпуса, при соединении медных лепестковых выводов, покрытых оловом, с золочеными выступами на кристалле ИС.

Микроплазменная сварка является разновидностью сварки плавлением. Отличительная особенность процесса — создание ионизированного потока инертного газа [смесь аргона с гелием (до 70%), с водородом (до 10—15%) или азотом]. Расплавление металла происходит сжатой дугой прямого действия и потоком плотной ионизированной плазмы. Этот способ сварки применяется для герметизации копусов приборов из ковара или никеля толщиной 0,1—0,3 мм. При этом сила тока составляет 5—10 А, скорость сварки 15—150 м/ч.

Лазерная сварка находит применение при монтаже различных элементов радиоэлектронной техники и при герметизации корпусов. Для микросварки наиболее широко используются лазеры на твердом теле (стекло с неодимом, алюмо-иттриевый гранат) с энергией излучения 2—30 Дж и длительностью импульса 1—10 мс.

Электронно-лучевая сварка успешно применяется для герметизации радиоэлектронных устройств в металлостеклянных корпусах. Обычно используется импульсная сварка при ускоряющем напряжении 20—100 кВ и силе тока в луче до нескольких десятков миллиампер.

Диффузионная сварка в вакууме и в водороде начинает применяться в производстве микросхем для сварки термокомпенсаторов кристаллов и на других операциях.

Выполнение соединений в микросхемах. Применяется несколько схем монтажа полупроводниковых приборов и интегральных схем, в которых для соединения используются различные способы микросварки.

Наиболее широко распространенной схемой монтажа является соединение контактных площадок полупроводникового кристалла прибора, полученного по пленарной технологии, с внешними выводами корпуса с помощью гибких проводников. Один конец круглого проводника из алюминия или золота диаметром 10—300 мкм должен быть приварен к тонкой металлической пленке из алюминия или золота, напыленной на окисленный кремний, а другой — к золоченому или алюминированному ковару или к золоченой толстой пленке на керамическом основании корпуса.

При сборке кремниевых бескорпусных диодов плоские медные золоченые выводы присоединяют непосредственно к полупроводнику микросваркой давлением с образованием эвтектики.

При сварке термокомпрессией, косвенным импульсным нагревом и ультра-П) звуком можно применять все варианты монтажа. При односторонней контактной сварке приемлемой является только сварка внахлестку по первым двум вариантам.

В гибридных интегральных схемах гибкие проводники сваривают с металлическими пленками (тонкими и толстыми), напыленными или выращенными гальванически на диэлектрических подложках (ситалл, поликор, алюмокерамика).

Разработаны и начинают широко применяться в промышленности беспроволочные методы монтажа интегральных схем, позволяющие максимально автоматизировать процессы их сборки. Беспроволочный монтаж выполняется по нескольким схемам, отличающимся конструктивным исполнением соединяемых элементов.

Наибольшее развитие получил способ монтажа лепестковых («паучковых») выводов к кристаллу и внешним выводам корпуса или контактным площадкам керамической подложки.

Для присоединения навесных элементов в гибридных схемах широко используется монтаж способом «перевернутого» кристалла с контактными выступами (столбиками) на подложке или кристалле. Находит применение и способ монтажа с балэчными выводами, причем эти выводы могут быть как на< кристалле полупроводникового прибора, так и на подложке гибридной схемы*. При беспроволочных способах монтажа сваривают разнообразные сочетания материалов (Аl—Al, A1—Аu, Аu—Аu, Сu—Sn—Аu и др.) и применяют различные типы соединений. При этом используются в основном групповые способы сварки (пайки), которые требуют более тщательного подхода к разработке и применению способов микросварки и рабочего инструмента.

Читайте так же:
Какие виды сварок бывают

Все способы беспроволочного монтажа разрабатывались в первую очередь с целью повышения производительности и надежности микросхем и снижения стоимости сборки и монтажа ИС и ГИС.

Монтаж навесных элементов с плоскими выводами в схемах на печатных платах выполняется несколькими способами сварки (или сварки-пайки) по двум вариантам: сварка плоских выводов приборов с токоведущими дорожками диэлектрической подложки или с штырями, запрессованными в отверстия платы.

При монтаже навесных элементов на печатные платы могут быть применены следующие способы микросварки давлением: двусторонняя контактная точечная; односторонняя точечная сдвоенным электродом; ультразвуковая.

Из-за отклонения размеров выводов, токоведущих дорожек на подложке, толщины покрытия и т.д. для сварки плоских выводов обязательно применяют автоматическую подстройку режима в процессе сварки.

Параметры режимов сварки и свариваемость материалов микросхем. Свойства микросварных соединений, выполненных различными способами микросварки, зависят от следующих основных групп факторов:

сочетания свариваемых материалов, стабильности их механических свойств и состояния соединяемых поверхностей;

воспроизводимости параметров процесса сварки и эффективности применяемых систем регулирования и управления; типа рабочего инструмента, обеспечивающего получение сварных соединений необходимой формы.

Трудности создания соединений в электронных микросхемах заключаются в специфике элементов и особенностях контактируемых пар: чрезвычайно большая разница в толщинах соединяемых элементов (проводники диаметром 20—750 мкм и пленки толщиной < 1 мкм) и большое различие физических свойств свариваемых элементов.

Для сварки проводников с тонкопленочными контактными площадками, напыленными на разнообразные подложки, применяется несколько способов в зависимости от сочетания свариваемых материалов выводов и контактных площадок.

При сварке проводников с металлическими пленками на изоляционных подложках из стекла, ситалла, керамики необходимо создать такой цикл нагрева свариваемых деталей, при котором не происходит разрушения подложки в зоне в результате термического удара.

При монтаже выводов навесных элементов на печатные платы, которые нельзя нагревать до высокой температуры, требуется выполнять сварку при минимальной длительности импульса (менее 3—5 мс).

Наиболее распространенным способом соединения при монтаже приборов в корпусе проволочными выводами остается термокомпрессия.

При термокомпрессии круглых проводников с металлическими пленками существует область оптимальных параметров режима (температура и усилие сжатия), в которой обеспечивается максимальная прочность сварных соединений. Величина этой области зависит от сочетания свариваемых материалов и типа рабочего инструмента.

Советуем подписаться на наши страницы в социальных сетях: Facebook | Вконтакте | Twitter | Google+ | Одноклассники

Точечная микросварка своими руками

Переносный малогабаритный электросварочный аппарат с выносным сварочным пистолетом предназначен для приваривания листовой нержавеющей и обычной стали толщиной 0,08…0,15 мм к массивным стальным деталям, а также для соединения сваркой стальной проволоки диаметром до 0,3 мм. Он может найти применение во многих отраслях народного хозяйства, например, при изготовлении термопар, для приваривания к металлоконструкциям тензометрических датчиков, предварительно наклеенных на стальную фольгу, и во многих других случаях.

Внешний вид сварочного аппарата показан на 3-й с. вкладки (вверху). Масса силового блока аппарата — около 8 кг, габариты-225х135Х120 мм.
Как видно из принципиальной электрической схемы, (рис.1) аппарат состоит из двух основных узлов: электронного реле на тринисторе V9 и мощного сварочноготрансформатора Т2.

03509985

К одному из выводов его низковольтной вторичной обмотки подключен сварочный электрод, второй вывод надежно соединяют с более массивной из двух свариваемых деталей.
Сетевая обмотка сварочного трансформатора подключена к сети через диодный мост V5-V8, в диагональ которого включен тринистор V9 электронного реле. Маломощный вспомогательный трансформатор Т1 питает цепь управления тринистором (обмотка ///) и лампу HI подсветки места сварки (обмотка //).

Аппарат работает следующим образом.
При замыкании контактов выключателя S1 «Вкл.» напряжение питания 220 В поступает на первичную обмотку трансформатора Т1 узла управления тринистором. Конденсатор С1, подключенный через замкнутые контакты переключателя S3 «Импульс» к выпрямительному мосту V1-V4, заряжается. Первичная обмотка сварочного трансформатора Т2 обесточена, так как тринистор V9 закрыт. При нажатии на кнопку переключателя S3 заряженный конденсатор С1 подключается к управляющему электроду тринистора V9 через переменный резистор R1.
Разрядный ток конденсатора открывает тринистор, и напряжение сети поступает на первичную обмотку сварочного трансформатора Т2. Если вторичная обмотка сварочного трансформатора соединена со свариваемыми деталями, то в ней возникает мощный импульс тока, который вызывает сильный разогрев металла а точке касания сварочного электрода.
Длительность импульса тока зависит от параметров времязадающей цепи R1C1. При номиналах элементов этой цели, указанных на схеме, максимальная длительность импульса tи (без учета внутреннего сопротивления тринистора) примерно равна 0,1 с. За это время ток во вторичной обмотке может достигать 300…350 А. Этого вполне достаточно для прочного приваривания к массивным конструкциям деталей из фольги толщиной до 0,15 мм, например из легированной стали 1Х18Н10Т.
Возврат устройства в исходное состояние происходит автоматически по окончании разряда конденсатора С1. Оптимальный режим сварки устанавливают подстроечным резистором R1 «Режим».
Конструктивно сварочный аппарат состоит из двух частей: силового блока и сварочного пистолета, которые соединяются между собой гибким кабелем с помощью многоконтактного разъема. На шасси силового блока размещены почти все элементы устройства. Конструкция шасси и его основные размеры показаны на кладке.

На основании шасси 3 размещены сварочный трансформатор 4 и планки с диодами V1-V8. К передней панели шасси прикреплен кронштейн 8 с установленными на нем вспомогательным трансформатором 5, конденсатором 6 и тринистором 7. На передней панели монтируют одну из частей разъема (в прямоугольном отверстии) соединительного кабеля, переменный резистор установки режима, сетевой тумблер, штыревую часть разъема сетевого шнура и зажим для подключения -более массивной из свариваемых деталей.

Кожух 1 изготовлен из дюралюминия толщиной 2,5 мм и снабжен ручкой 2 для переноски. Устройство сварочного пистолета

Корпус 7 пистолета изготовлен в виде двух одинаковых по форме частей, выфрезерованных из листового текстолита толщиной 12 мм. В корпусе смонтированы держатель 3 сварочного электрода 2. лампа 8 подсвет-ки с кнопочным выключателем 4 «Подсветка», микропереключатель 6 «Импульс». Соединительным кабелем 5 служит гибкий двадцатичетырехпроводный кабель в резиновой изоляции наружным диаметром 11 мм и сечением каждого провода 0,75 мм кв.
Пять проводов кабеля использованы для подключения микропереключателя и лампы подсветки, а остальные девятнадцать запаяны непосредственно в держатель 3 электрода. Держатель изготавливают из медного бруска прямоугольного или квадратного сечения. Электродом 2 служит медный пруток диаметром 8 мм. Электрод должен быть надежно зафиксирован в держателе. Вместе с этим должна быть предусмотрена возможность смены электрода. Для приваривания фольги жало электрода затачивают конусом, переходящим в сферу диаметром 1…1.5 мм. Для сваривания проволоки применяют электрод с плоским рабочим горцем.

Монтаж пистолета начинают с разделки кабеля. Девятнадцать проводников кабеля тщательно зачищают, скручивают вместе, облуживают и запаивают в отверстие держателя 3 электрода. Оставшиеся пять проводов обрезают до необходимой длины и припаивают к микропереключателю 6 и лампе 8 подсветки. Второй конец кабеля заводят во вставку штепсельного разъема типа А на 20 контактов (кабельная конструкция, см. фото на вкладке). В пистолете использованы микропереключатель МПЗ-1Т, лампа подсветки СМ-34 на 6 В, 0,25 А с арматурой, снабженной небольшой линзой, кнопка включения лампы подсветки — от настольной лампы.
На лицевую панель шасси силового блока устанавливают ответную часть разъема соединительного кабеля. Пять соответствующих контактов разъема подключают к тем или иным цепям устройства, а остальные соединяют параллельно и подключают к одному из выводов вторичной обмотки сварочного трансформатора.
Магнитопровод этого трансформатора набирают из пластин Ш40, толщина набора 70 мм. Первичная обмотка содержит 300 витков провода ПЭВ-2 0,8. Вторичная обмотка этого трансформатора состоит из 10 витков изолированного провода или шины сечением не менее 20 кв.мм (в описываемой конструкции эта обмотка выполнена из двух многожильных проводников диаметром 4 мм, наматываемых одновременно). Такого же сечения изготовляют «заземляющий» соединительный проводник вторичной обмотки. Его длину не следует выбирать большей 2…2,5 м. Трансформатор Т1 может быть любым, обеспечивающим на вторичных обмотках напряжения 8…10 В (для заряда конденсатора С1) и 3…6 В (для питания лампы).
В данной конструкции был применен магнитопровод от трансформатора детской железной дороги (сечение 10х10, Г-образные пластины). На нем размещают сетевую обмотку /, содержащую 8000 витков провода ПЭВ-2 0,08, обмотку //-330 витков провода ПЭВ-2 0,3 и обмотку ///-350 витков провода ПЭВ-2 0,2. Зажим, соединяемый с нижним (по схеме) выводом вторичной обмотки трансформатора Т2, монтируют на шасси без изоляционных прокладок.
При изготовлении трансформаторов необходимо иметь в виду, что от качества изоляции их обмоток зависит безопасность работающего с аппаратом. Поэтому поверх первичных (сетевых) обмоток трансформаторов следует наложить не менее 4-6 слоев лакоткани или бумаги, пропитанной парафином.
В
сварочном аппарате использованы подстроечный резистор ППЗ-11, конденсатор К50-3, сетевой тумблер ТП1-2. Следует отметить, что применение тринистора ПТЛ-50 обусловлено исключительно желанием обеспечить высокую надежность аппарата и безотказную работу в тяжелых климатических условиях и при больших колебаниях сетевого напряжения. С некоторым ухудшением качества сварки в аппарате могут быть использованы тринисторы серии КУ202 с индексами К, Л, М или Н. При этом необходимо уменьшить сопротивление резистора R1 до 50 Ом, а емкость конденсатор С1 увеличить вдвое. Правильно собранный аппарат начинает работать сразу, без какого-либо налаживания.
Качество сварного шва (точки) проверяют следующим образом. Полоску стальной фольги шириной 10…12 мм приваривают к очищенной от окалины поверхности стального бруска тремя-пятью точками, а затем отрывают с помощью пассатижей.
В точках сварки на фольге должны остаться отверстия диаметром 0,5…0,8 мм, что свидетельствует о том, что отрыв происходит не по месту сварки, а вокруг него. Если же фольга отрывается в месте сварки, подбирают сварочный ток подстроечным резистором «Режим». При подборе тока необходимо учитывать, что качество шва ухудшается при увеличении давления на электрод. Следует отметить также, что по справочным данным постоянное напряжение, которое необходимо подавать на управляющий электрод тринистора ПТЛ-50 для его открывания, равно 8 В. Однако качество шва значительно улучшается, если это напряжение увеличить до 12…15 В (напряжение заряженного конденсатора С1).

Читайте так же:
Виды электрических плит для кухни

Порядок работы с аппаратом.

В первую очередь «заземляют» кожух сварочного аппарата и конструкцию, к которой нужно приварить деталь. Работающий со сварочным аппаратом должен надеть защитные резиновые перчатки и стоять на резиновом коврике. Включают аппарат, привариваемую деталь прикладывают к конструкции и плотно прижимают жалом сварочного электрода пистолета в том месте, где нужно получить точку сварного шва. Нажимают на «спусковой крючок» пистолета (на кнопку микропереключателя), через 1…1.5 с снимают пистолет с детали и устанавливают жало на следующую точку. В тех случаях, когда это необходимо, включают лампу подсветки.

При эксплуатации аппарата на производстве он обязательно должен быть принят местной комиссией по технике безопасности. В заключение следует указать, что возможности аппарата могут быть значительно расширены. Если использовать, например, омедненный графитовый электрод диаметром 6…8 мм, можно сваривать медные луженые проводники диаметром до 0,3 мм.
Очень хорошо такие проводники привариваются к любым луженым и посеребреным деталям, а также к медной нелуженой фольге. Можно, например, приваривать тонкие проводники к фольге печатной платы без применения флюса. Хорошие результаты получены при сваривании листов очень тонкой медной фольги. В этом случае необходимо опытным путем подобрать длину и форму жала графитового электрода.

Если необходимо сваривать детали из более толстых листовых металлов, сварочный трансформатор придется заменить более мощным. Например, для соединения стальных листов толщиной 0,5…0,7 мм необходим трансформатор сечением магнитопровода не менее 65…70 кв.см.
Первичная обмотка такого трансформатора должна содержать 160-165 витков провода ПЭТВ диаметром 1,62… 1,7 мм, а вторичная — 4,5 витка медной шины сечением не менее 90 кв.мм (из расчета на сварочный ток 1400…1800 А). Диаметр электрода нужно увеличить до 18…20 мм. При этом в первичной обмотке трансформатора в момент сварочного импульса протекает ток около 45 А. Поэтому диоды V5-V8 нужно будет заменить более мощными, например ВЛ-50.
Тринистор V9 также должен быть рассчитан на прямой ток не менее 50 А. Опыт, однако, показывает, что для сваривания стальных листов толщиной до 0,5…0,7 мм вполне допустимо использование тринистора ПТЛ-50 без дополнительного радиатора, поскольку сварочный импульс очень короток.
Для того чтобы обеспечить номинальный режим при сваривании металлов различной толщины (от 0,08 до 0,7 мм), в аппарате необходимо предусмотреть более широкое регулирование сварочного тока. Наиболее целесообразно вместо конденсатора С1 использовать набор из трех конденсаторов емкостью по 1000 мкф каждый, коммутируемых переключателем либо последовательно (для тонколистовых металлов), либо параллельно.

Сварка ударно конденсаторная – Конденсаторная сварка: схемы, описание, оборудование

Конденсаторная сварка осуществляется кратковременными импульсами сварочного тока, продолжительностью в тысячные доли секунды; за время импульса в зоне сварки выделяется тепло, которое сравнительно медленно распространяется в металле па глубину, необходимую для сварки. При значительных толщинах металла возникает трудно преодолимое несоответствие между продолжительностью сварочного импульса и продолжительностью необходимого прогрева металла. При малых толщинах этого несоответствия нет.

При толщинах металла менее 1 мм мощность конденсаторной машины в 50—100 раз ниже мощности обычной контактной машины. С увеличением толщины металла разница в мощностях конденсаторной машины и обычной контактной уменьшается, а сварка на обычной контактной машине становится более надежной. Поэтому применение конденсаторной сварки для металла толщиной более 2 мм рационально лишь для особых случаев.

Примером конденсаторной точечной машины может служить машина ТКМ-4. Машина стационарная, педальная; вес ее 165 кг; напряжение питающей сети 220 в; средняя мощность, потребляемая из сети 0,1 ква (рис. 205). Конденсаторы бумажно-масляные, общая емкость 400 мкф, напряжение зарядки 600 в; штепсельный переключатель позволяет менять включенную емкость от 10 до 400 мкф. Сварочный трансформатор имеет четыре ступени регулирования. Осадочное давление на электроды, создаваемое грузом через систему рычагов, обеспечивает строгое постоянство установленного давления, что очень важно для конденсаторной сварки.

При сварке двух деталей различных толщин решающую роль играет деталь с меньшей толщиной, которая не должна превышать возможностей машины, вторая же деталь может иметь сколь-угодно большую толщину, что значительно расширяет применение точечной конденсаторной сварки. Например, на машине ГКМ-4 металл толщиной 0,2 мм можно приварить к металлу толщиной 10 или 15 мм.

Рис. 1. Электрическая схема конденсаторной машины малой мощности

Электрический режим машины можно регулировать в широких пределах, меняя число включенных конденсаторов и ступень сварочного трансформатора. Можно менять амплитуду сварочного тока и продолжительность его протекания. Максимальное значение сварочного тока около 5000 а, средняя продолжительность его протекания 0,6—0,8 -10

При нажатии на педаль давление груза передается на электроды, конденсаторы замыкаются на первичную обмотку трансформатора, протекает один строго определенный импульс сварочного тока. При освобождении педали конденсаторы снова заряжаются, машина готова к следующей операции сварки; при повторном нажатии педали проходит снова точно такой же импульс сварочного тока.

Рис. 2. Точечная конденсаторная машина ТКМ-4

Для монтажных работ на крупногабаритных изделиях, сборки схем и т. д. сконструирована переносная точечная машина ПТКМ-1 Бесом 34 кг, сваривающая металл максимальной толщиной 0,3 мм. Сварочная часть машины выполнена в виде легких ручных клещей, присоединяемых к машине гибкими проводами длиной 1 —1,5 м.

В простейших точечных конденсаторных машинах привод машины осуществляется усилием работающего, что допустимо при сварке мелких деталей с небольшим усилием и работой осадки и не очень интенсивном производстве. Для более трудных условий работы может быть применена машина с механизированным, например электрическим приводом, типа ТКМ-8. Она имеет кулачковый пружинный механизм сжатия с приводом от электродвигателя через сцепляющую муфту. При нажатии педали происходит сцепление механизма с муфтой и производится включение тока и сжатие электродов. Если нажать педаль кратковременно, то сваривается одна точка, если задержать нажатую педаль, то сваривается 20—120 точек в минуту, в зависимости от регулировки; машина работает автоматически непрерывно, пока не будет освобождена педаль. Машина предназначена для точечной сварки металла толщиной 0,05—0,5 мм; номинальная мощность машины 0,3 ква, усилие сжатия электродов 6—40 кГ.

Точечная конденсаторная сварка нашла промышленное применение для многих металлов: алюминия и алюминиевых сплавов, всевозможных медных сплавов, никеля и никелевых сплавов, платины, серебра и его сплавов, всевозможных сталей, вольфрама, молибдена и др.; возможны многочисленные сочетания разнородных металлов. Точечная конденсаторная сварка заменяет пайку, клепку, фальцовку. Она находит все более широкое применение в приборостроении, в производстве электроизмерительных и авиационных приборов, часовых механизмов, фотоаппаратов, электроаппаратуры, оптических приборов, радиоламп, электроосветительных ламп, электронной аппаратуры, радиоприемников и телевизоров, авторучек, металлических игрушек, галантереи, ювелирных изделий и т. д.

Рис. 3. Непрерывный плотный шов, выполненный конденсаторной сваркой

Разработан также способ шовной конденсаторной сварки, получивший производственное применение. Шовная сварка выполняется, как точечная, со столь частой посадкой сварных точек, что каждая последующая точка перекрывает предыдущую на 0,3—0,5 диаметра, что и создает плотный непрерывный шов, непроницаемый для жидкостей и газов (рис. 206). Электроды машины имеют форму роликов, катящихся по шву непрерывно с постоянной скоростью и приводятся от небольшого электродвигателя. Сварочный ток подается отдельными импульсами от батареи конденсаторов, как при точечной сварке. Электронная система управления позволяет производить до 50 полных циклов заряд — разряд конденсаторов за 1 сек. Шовная конденсаторная сварка нашла разнообразное применение в приборостроении.

Конденсаторная сварка открыла для сварочной техники новую довольно значительную область применения: металлы малых толщин, мелкие детали и микродетали, плохо разли

Оборудование для конденсаторной сварки

Особенности конденсаторной сварки. Конденсаторная сварка является одной из разновидностей сварки запасенной энергией. К ним относятся:

  • конденсаторная сварка;
  • электромагнитная сварка;
  • инерционная сварка;
  • аккумуляторная сварка.

Накопление энергии происходит в батарее конденсаторов, в магнитном поле специального сварочного трансформатора, во вращающихся частях генератора или в аккумуляторной батарее соответственно

Наиболее широкое промышленное применение получила конденсаторная сварка — технологический процесс, при котором неразъемное соединение металлических заготовок осуществляется за счет выделения теплоты в месте контакта от протекающего тока при разряде конденсаторов и сопутствующем сжатии зоны сварного соединения. Из зоны сварки с помощью сжимающего усилия удаляются оксидные пленки, грязь, различные включения, устраняются неровности, после чего возникают межатомные связи между свариваемыми чистыми поверхностями

Существует два вида конденсаторной сварки:

1. Бестрансформаторная сварка (рис. 1, а). Конденсатор подключен непосредственно к свариваемым заготовкам . Разряд конденсатора происходит в момент удара заготовки 3 по заготовке 4 и оплавляет торцы заготовок, которые свариваются под действием усилия осадки. В данном случае могут действовать две схемы зарядки конденсаторов:

  1. конденсаторы емкостью до 1000 мкФ заряжаются на напряжение до 1000 В с помощью повышающего трансформатора, сварочный ток от 10 до 100 А, время сварки менее 0,005 с. Сварка ударно-стыковая выполняется на специальных автоматах без участия человека из-за опасного высокого напряжения;
  2. конденсаторы емкостью от 40 000 до 400 000 мкФ заряжаются на низкое напряжение до 60 В с помощью понижающего трансформатора, сварочный ток от 1000 до 2000 А, время сварки от 0,1 до 0,6 с .
Читайте так же:
Как использовать монтажную пену без пистолета видео

Рис. 1. Схемы конденсаторной сварки : а — бестрансформаторная с разрядом на изделие; б — с разрядом на первичную обмотку трансформатора; 1 — пружина; 2 — защелка; 3 и 4 — заготовки; С — конденсатор; В — выпрямитель; Т — трансформатор

2. Трансформаторная сварка (рис . 1, б). Конденсаторы разрежаются на первичную обмотку сварочного трансформатора, во вторичной цепи которого находятся предварительно сжатые между электродами заготовки . При левом положении переключателя П конденсатор заряжается . В правом положении переключателя происходит разряд конденсаторов на первичную обмотку сварочного трансформатора Во вторичной обмотке трансформатора индуцируется ЭДС, которая определяет значение тока в сварочной цепи. Усилие сжатия заготовок составляет 20. . .200 Н и выбирается в соответствии со свойствами материала и толщиной свариваемых заготовок

Сварочный процесс полностью автоматизирован Для работы с аппаратами конденсаторной сварки не требуется специальной квалификации

Бестрансформаторная сварка используется в основном для стыковой сварки, трансформаторная — для точечной и шовной. Конденсаторная сварка позволяет приваривать крепежные элементы к тонколистовому металлу толщиной от 0,5 мм без видимых повреждений с обратной стороны листа без защитного газа или защитных керамических колец, применяемых при дуговой сварке Конденсаторная сварка особенно эффективна при соединении деталей из однородных металлов: сталей различных классов, листовых заготовок из латуней, бронзы, тугоплавких металлов, никеля, титановых, алюминиевых сплавов толщиной от 0,001 до 2 мм и стержневых заготовок сечением до 20 мм, а также для приваривания тонких пластин к более толстым, сварки разнородных металлов, например константана и низкоуглеродистой стали, константана и нержавеющей стали, латуни и нихрома, бронзы и серебра и др

Трансформаторная микросварка характеризуется следующими параметрами: емкость конденсаторов — до 1000 мкФ, напряжение зарядки — до 1000 В, сварочный ток — до 6000 А, время сварки — до 0,001 с . При трансформаторной сварке относительно крупных заготовок емкость конденсаторов — до 100 000 мкФ, напряжение зарядки — до 450 В, сварочный ток — 60 000 А, время сварки — до 0,01 с .

Бестрансформаторный способ применяется для стыковой сварки нитей накала, спиралей (диаметром менее 1 мм), для соединения термопар, в часовой промышленности и для сварки перьев авторучек (приварка шариков из твердого сплава к остову из нержавеющей стали).

Трансформаторную конденсаторную сварку применяют при изготовлении сильфонов, мембран, реле, металлических игрушек, для сварки серебряных контактов, микросхем в радиопромышленности, многослойных пакетов из медной фольги, внутренней арматуры миниатюрных приемно-усилительных ламп, спиралей с ножками низковольтных ламп накаливания, катодов приемно-усилительных ламп и т . д. Основные области применения — обработка листового металла, электронная промышленность, изготовление коммуникационных шкафов, лабораторного и медицинского оборудования, оборудования для пищевой промышленности, торговых и игровых автоматов, строительство зданий, прокладка инженерных коммуникаций и прочие промышленные технологии

Сварочные машины для конденсаторной сварки

Сварочные машины Power-KES (рис . 2) работают по принципу преобразованного разряда конденсатора. Во время остановки процесса сварки электронное зарядное устройство заряжает специальные конденсаторы до необходимого для сварочного процесса напряжения Во время сварки конденсаторы разрежаются с помощью трансформаторов . Поскольку во время этого процесса энергия из сети не поступает, то подключенная нагрузка очень мала (примерно в 20 раз меньше по сравнению с аналогичными машинами контактной сварки), а нагрузка сети симметрична. Большие машины Power-KES рассчитаны на потребление из сети 32 А.

Рис. 2. Машина портального типа Power-KES для конденсаторной сварки

Сварочная машина обеспечивает высокую точность сварки без искажений и отжигов, сварку различных материалов (сталь и медь, латунь и сталь) и деталей различной формы с разными поверхностями . Можно сваривать высокопрочные и жаростойкие стали и стали с содержанием углерода больше 0,2 %.

С помощью пульта управления Qualy-KES можно вводить и регулировать параметры сварочного процесса: мощность сварки, сварочный ток, усилие сжатия электродов и время сварки. В Qualy-KES встроен программируемый логический контроллер Все значения параметров, а также результаты работы отображаются на дисплее ПК.

Конденсаторная сварка легко механизируется и автоматизируется.

Аппараты для конденсаторной сварки

NOMARK 66 D — сварочный аппарат конденсаторного типа (Capacitor Discharge) с непрерывным циклом работы, предназначен для приварки различных типов крепежных элементов из омедненной и нержавеющей стали, латуни, алюминия к металлическому листу без повреждения металла с обратной стороны в месте сварки Минимальная толщина листа 0,6 мм, максимальная толщина не ограничена

Силовой блок сварочного аппарата NOMARK 66 D (рис. 3) конденсаторного типа (производитель: Thomas Welding Systems, Бельгия). Источником сварочной энергии служит батарея мощных электролитических конденсаторов большой емкости. Зарядный ток формируется источником питания трансформаторного типа, который выполнен на современной интегральной элементной базе по технологии IGBT, имеет очень высокие КПД и надежность.

Рис. 3. Силовой блок сварочного аппарата NOMARK 66 D со сварочным пистолетом, цанговым держателем для привариваемых метизов и кабелем заземления

Цифровая схема управления контролирует все параметры работы аппарата, а также обеспечивает стабильность сварочных параметров при различных режимах работы и колебаниях питающего напряжения. Сварочный аппарат имеет электрическую и термозащиту. Основные элементы индикации режимов и индикатор цифрового вольтметра выведены на переднюю панель

Пистолет для приварки шпилек HBS имеет небольшую массу (0,7 кг), сделан из ударопрочного пластика. С помощью резьбы присоединяется цанговый зажим . Есть автоматическая настройка на длину метиза, регулируется усилие пружины ударного механизма головки . Диапазон длин привариваемых метизов от 6 до 55 мм . Скорость сварки от 8 до 20 метизов в минуту Из-за того что время сварки незначительно, а пауза между циклами довольно велика, сварка выполняется при воздушном охлаждении электродов Пистолеты для ударной сварки имеют устройство для подъема метиза. Высота подъема цанги для закрепления привариваемого изделия регулируется с точностью ±0,25 мм. Высокая точность движения сварочного плунжера пистолета обеспечивается шариковой направляющей

Универсальная конденсаторная сварочная машина типа МТК- 6301 (рис . 4) имеет короткий импульс тока, довольно высокую мощность и возможность приложения ковочного усилия, она позволяет соединять стали и алюминиевые сплавы. Жесткость корпуса машин данной серии (МТК-6301, МТК-5001) увеличена за счет бокового расположения трансформатора.

Рис. 4. Конденсаторная точечная машина МТК-6301

Основные технические характеристики аналогичных машин приведены в табл . 1

Технические характеристики универсальных конденсаторных машин

Точечная сварка в домашней мастерской

Точечная сварка в домашней мастерскойРазновидности и классификация сварки

Сваркой называют процесс получения неразъемного соединения деталей за счет образования межатомных связей в сварном шве. Такие связи возникают при воздействии местного или общего нагрева свариваемых деталей, либо под воздействием пластической деформации, либо того и другого вместе.

Сварка чаще всего применяется для соединения металлов и их сплавов, для соединения термопластов и даже в медицине. Но сварка живых тканей выходит за рамки данной статьи. Поэтому вкратце рассмотрим лишь те виды сварки, которые применяются в технике.

Современное развитие сварочных технологий таково, что позволяет выполнять сварочные работы не только в условиях производства, а также на открытом воздухе и даже под водой. В последние годы сварочные работы в качестве эксперимента уже проводились в космосе.

Для производства сварки применяются различные виды энергии. В первую очередь это электрическая дуга или пламя газовой горелки. Более экзотичными источниками являются ультразвук, излучение лазера, электронный луч, а также сварка трением.

Все сварочные работы сопряжены с высокой пожарной опасностью, загазованностью вредными газами, ультрафиолетовым облучением, и просто опасностью поражения электрическим током. Поэтому проведение сварочных работ требует неукоснительного соблюдения правил техники безопасности.

Все способы сварки в зависимости от вида энергии и технологии ее использования подразделяются на три основных класса: термический класс, термомеханический класс, и механический класс.

Сварка термического класса осуществляется плавлением за счет использования тепловой энергии. В основном это широко известная электродуговая сварка и газовая сварка. Сварка термомеханического класса выполняется при помощи тепловой энергии и механического давления. Для сварки механического класса используется энергия давления и трения. Все разделения сварки на классы производятся согласно ГОСТ 19521-74.

Точечная сварка

Точечная сварка относится к разряду так называемых контактных сварок. Кроме нее туда же относятся стыковая и шовная сварки. В условиях домашней мастерской последние два вида осуществить практически невозможно, поскольку оборудование слишком сложное для повторения в условиях кустарного производства. Поэтому далее будет рассмотрена только точечная контактная сварка.

Согласно вышеприведенной классификации точечная сварка относится к термомеханическому классу. Процесс сварки состоит из нескольких этапов. Сначала свариваемые детали, предварительно совмещенные в нужном положении, помещаются между электродами сварочной машины и прижимаются друг к другу. Затем подвергаются нагреву до состояния пластичности, и последующему совместному пластическому деформированию. При использовании автоматического оборудования в промышленных условиях достигается частота сварки 600 точек в минуту.

Краткая технология точечной сварки

Нагрев деталей осуществляется за счет подачи кратковременного импульса сварочного тока. Длительность импульса варьируется в пределах 0,01…0,1 сек в зависимости от условий сварки. Этот кратковременный импульс обеспечивает расплавление металла в зоне электродов и образование общего для обеих деталей жидкого ядра. После снятия импульса тока в течение некоторого времени детали удерживаются под давлением для остывания и кристаллизации расплавленного ядра.

Прижатие деталей в момент сварочного импульса обеспечивает образование вокруг расплавленного ядра уплотняющего пояска, который препятствует выплеску расплава из зоны сварки. Поэтому дополнительных мер защиты места сварки не требуется.

Усилие сжатия электродов следует снимать с некоторой задержкой после окончания сварочного импульса, что обеспечивает условия для лучшей кристаллизации расплавленного металла. В некоторых случаях на окончательной стадии рекомендуется увеличение усилия прижима деталей, что обеспечивает проковывание металла и устранение внутри сварного шва неоднородностей.

Следует заметить, что для получения качественного сварочного шва свариваемые поверхности должны быть предварительно подготовлены, в частности, зачищены от толстых оксидных пленок или попросту ржавчины. Для сварки достаточно тонких листов, до 1…1,5 мм применяется так называемая конденсаторная сварка.

Конденсаторы заряжаются от сети непрерывно, достаточно небольшим током, потребляя незначительную мощность. В момент сварки конденсаторы разряжаются через свариваемые детали, обеспечивая необходимый режим сварки.

Такие источники применяются для сварки миниатюрных и сверхминиатюрных деталей в приборостроении, электронной и радиотехнической промышленности. При этом возможна сварка, как черных, так и цветных металлов, причем даже в различном сочетании.

Достоинства и недостатки точечной сварки

Как и все на свете точечная сварка имеет свои достоинства и недостатки. К достоинствам, прежде всего, следует отнести высокую экономичность, механическую прочность точечных швов и возможность автоматизации сварочных процессов. Недостатком следует признать отсутствие герметичности сварочных швов.

Самодельные конструкции аппаратов точечной сварки

В условиях домашней мастерской точечная сварка может быть просто необходима, поэтому было разработано немало аппаратов, пригодных для самостоятельного изготовления в домашних условиях. Далее будет приведено краткое описание некоторых из них.

Одна из первых конструкций аппарата для точечной сварки была описана в журнале РАДИО N 12, 1978 г. с.47-48 . Схема аппарата показана на рисунке 1.

Схема аппарата для точечной сварки

Рисунок 1. Схема аппарата для точечной сварки

Подобный аппарат не отличается повышенной мощностью, с его помощью можно сваривать листовой металл толщиной до 0,2 мм или стальную проволоку диаметром до 0,3 мм. При таких параметрах вполне возможна сварка термопар, а также приваривание тонких деталей из фольги к массивным стальным основаниям.

Одно из возможных применений это приваривание тонких листов фольги с предварительно наклеенными тензодатчиками к испытываемым деталям. В виду того, что свариваемые детали малогабаритные, усилие прижима при их сварке невелико, поэтому сварочный электрод выполнен в виде пистолета. Прижим деталей осуществляется усилием руки.

Схема сварочного аппарата достаточно проста. Основное ее назначение это создание сварочного импульса необходимой длительности, что обеспечивает различные режимы сварки.

Основным узлом аппарата является сварочный трансформатор Т2. К его вторичной обмотке (по схеме верхний конец) с помощью многожильного гибкого кабеля подключается сварочный электрод, а к нижнему концу подключается более массивная свариваемая деталь. Подключение должно быть достаточно надежным.

Сварочный трансформатор подключен к сети через выпрямительный мост V5…V8. В другую диагональ этого моста включен тиристор V9 при открытии которого напряжение сети через выпрямительный мост прикладывается к первичной обмотке трансформатора Т2. Управление тиристором осуществляется с помощью кнопки S3 «Импульс» расположенной в рукоятке сварочного пистолета.

При включении в сеть от вспомогательного источника сразу же заряжается конденсатор С1. Вспомогательный источник состоит из трансформатора Т1 и выпрямительного моста V1…V4. Если теперь нажать кнопку S3 «Импульс», то конденсатор С1 через ее замкнутый контакт и резистор R1, будет разряжаться через участок управляющий электрод – катод тиристора V9, что приведет к открытию последнего.

Открывшийся тиристор замкнет диагональ моста V5…V9 (по постоянному току), что приведет к включению сварочного трансформатора Т1. Тиристор будет открыт до тех пор, пока не разрядится конденсатор С1. Время разряда конденсатора, а следовательно и время импульса сварочного тока можно регулировать переменным резистором R1.

Для того, чтобы подготовить следующий импульс сварки, кнопку «Импульс» необходимо кратковременно отпустить, чтобы зарядился конденсатор С1. Следующий импульс будет сформирован при повторном нажатии на кнопку: весь процесс повторится, как было описано выше.

В качестве трансформатора Т1 подойдет любой маломощный (5…10Вт) с выходным напряжением на обмотке III около 15В. Обмотка II используется для подсветки, ее напряжение 5…6В. При указанных на схеме номиналах С1 и R1 максимальная длительность импульса сварки около 0,1 сек, что обеспечивает сварочный ток на уровне 300…500 А, что вполне достаточно для сварки малогабаритных деталей, упоминавшихся выше.

Трансформатор Т2 изготовлен на железе Ш40. Толщина набора 70 мм, первичная обмотка намотана проводом ПЭВ-2 0,8 и содержит 300 витков. Вторичная обмотка намотана сразу в два провода и содержит 10 витков. Провод вторичной обмотки многожильный диаметром 4мм. Также можно применить шину сечением не менее 20 кв.мм.

Тиристор ПТЛ-50 вполне возможно заменить на КУ202 с буквами К, Л, М, Н. При этом емкость конденсатора С1 придется увеличить до 2000 мкФ. Вот только надежность работы аппарата при такой замене может несколько уменьшиться.

Более мощный аппарат для точечной сварки

Описанный выше аппарат можно назвать аппаратом для микросварки. Схема более мощного аппарата показана на рисунке 2.

Принципиальная схема аппарата точечной сварки

Рисунок 2. Принципиальная схема аппарата точечной сварки

При ближайшем рассмотрении нетрудно заметить, что структурно она очень похожа на предыдущую и содержит те же узлы, а именно: сварочный трансформатор, полупроводниковый тиристорный ключ и устройство выдержки времени, обеспечивающее требуемую длительность сварочного импульса.

Эта схема позволяет сваривать листовой металл толщиной до 1 мм, а также проволоку диаметром до 4 мм. Такое увеличение мощности по сравнению с предыдущей схемой достигнуто за счет применения более мощного сварочного трансформатора.

Общая схема аппарата показана на рисунке 2а. Первичная обмотка сварочного трансформатора Т2 подключена к сети через тиристорный бесконтактный пускатель типа МТТ4К. Прямой ток такого пускателя 80 А, обратное напряжение 800 В. Его внутреннее устройство показано на рисунке 2в.

Схема модуля достаточно проста и содержит два тиристора, включенных встречно – параллельно, два диода и резистор. Контакты 1 и 3 коммутируют нагрузку в то время, когда замкнуты контакты 4 и 5. В нашем случае они замыкаются при помощи контактной группы реле К1. Для защиты от аварийных ситуаций схема содержит автоматический выключатель АВ1.

Реле времени собрано на трансформаторе Тр1, диодном мосте КЦ402, электролитических конденсаторах С1…С6, реле К1 и коммутирующих переключателях и кнопках. В положении показанном на схеме при включении автомата АВ1 начинают заряжаться конденсаторы С1…С6.

Конденсаторы подключаются к диодному мосту при помощи переключателя П2К с независимой фиксацией, что позволяет подключать различное количество конденсаторов и тем самым регулировать выдержку времени. В цепи заряда конденсаторов установлен резистор R1, его назначение ограничить зарядный ток конденсаторов в начальный момент зарядки. Это позволяет увеличить срок службы конденсаторов. Зарядка конденсаторов происходит через нормально – замкнутый контакт кнопки КН1.

При нажатии на кнопку КН1 замыкается ее нормально – разомкнутый контакт, который подключает реле К1 к времязадающим конденсаторам. Нормально – замкнутый контакт в это время, естественно, размыкается, что препятствует подключению реле К1 непосредственно к выпрямительному мосту.

Реле срабатывает, своими контактами замыкает управляющие контакты тиристорного реле, которое и включает сварочный трансформатор. После того, как конденсаторы разрядятся, реле отключится, сварочный импульс прекратится. Для подготовки к следующему импульсу кнопку КН1 требуется отпустить.

Для точного подбора времени импульса служит переменный резистор R2. В качестве реле К1 подойдет герконовое реле типа РЭС42, РЭС43 или подобное с напряжением срабатывания 15…20 В. При этом, чем меньший ток срабатывания реле, тем больше выдержка времени. Ток между контактами 4 и 5 тиристорного пускателя не превышает 100 мА, поэтому подойдет любое слаботочное реле.

Конденсаторы C1 и С2 по 47 мкФ, С3, С4 100 мкФ, С5 и С6 470 мкФ. Рабочее напряжение конденсаторов не менее 50 В. Трансформатор Тр2 подойдет любой, мощностью не свыше 20 Вт с напряжением вторичной обмотки 20…25 В. Выпрямительный мост можно собрать из отдельных диодов, например широко распространенных 1N4007 или 1N5408.

Сварочный трансформатор изготовлен на магнитопроводе от сгоревшего ЛАТРА на 2,5 А. После удаления старой обмотки железо обматывается не менее, чем тремя слоями лакоткани. На торцах магнитопровода, перед намоткой лакоткани, устанавливаются кольца из тонкого электрокартона, которые подгибаются по внешней и внутренней кромкам кольца. Это предотвращает разрушение лакоткани при намотке и последующей эксплуатации.

Первичная обмотка выполняется проводом диаметром 1,5 мм, лучше всего, если провод будет с тканевой изоляцией, что улучшает условия для пропитки обмотки лаком. Для пропитки можно использовать лак КС521 или ему подобный. Количество витков показано на рисунке 2б. с помощью отводов можно осуществлять грубую регулировку сварочного тока. Между первичной и вторичной обмотками наматывается слой хлопчатобумажной ленты, после чего катушка пропитывается лаком.

Вторичная обмотка выполнена многожильным проводом в кремнийорганической изоляции диаметром 20 мм и содержит 4…7 витков. Площадь провода не менее 300 кв.мм. На концах провода устанавливаются наконечники, которые для лучшего контакта следует пропаять. Возможно выполнить вторичную обмотку жгутом из нескольких более тонких проводов. Общая площадь должна быть не менее указанной, а намотка всех проводов должна производиться одновременно. Такая конструкция трансформатора обеспечивает сварочный ток до 1500 А. Напряжение холостого хода 4…7 В.

Сварочно – контактный механизм выполняется в соответствии с характером выполняемых работ по одной из известных схем. Чаще всего это сварочные клещи. Давление, создаваемое механизмом, около 20 КГ/см.кв. Более точно это усилие подбирается практическим путем. Контакты изготавливаются из меди или бериллиевой бронзы. При этом размер контактных площадок должен быть по возможности минимальным, что обеспечивает получение более качественного сварочного ядра.

Любительских конструкций для точечной сварки сейчас можно найти немало. В дело идет все, что угодно. Например, одна из конструкций создана на основе силовых трансформаторов ТС270 от старых ламповых цветных телевизоров. Для создания такой установки понадобилось шесть трансформаторов. Появляются даже схемы с микропроцессорным управлением, но общий смысл конструкций остается неизменным: создать кратковременный импульс сварочного тока и достаточное усилие прижима в месте сварки.

Оборудование для микросварки

Установка для высокоскоростной ультразвуковой микросварки Palomar 8000i

• Напряжение питания: 220В 50Гц
• Мгновенная потребляемая мощность: до 600Вт
• Выходное напряжение: 0,1В — 5В
• Ток подогрева: 1А — 50А
• Ток сварки: 1А — 50А
• Время сварки: 0,01сек — 1сек

Цена 65 400 руб.

Инструмент сварки со сдвоенным электродом МАГИСТР БИС-05

• Вольфрамовые электроды, ВА диаметр: 0,8мм
• Регулируемый зазор между электродами: 0 — 2мм
• Регулируемое усилие срабатывания сварки: 1Н — 10Н

Запросить цену в 1 клик

Инструмент сварки с расщепленным электродом МАГИСТР БИС-06

• Допускается использование электродов типа ЭК1и ЭК2
• Регулируемое усилие срабатывания сварки: 1Н — 10Н

Цена 10 800 руб.

Устройство микродуговой сварки МАГИСТР УМД-01

Устройство микродуговой сварки”Магистр-УМД-01” предназначено для сварки изделий из металлов и сплавов в среде защитного газа. Оно может применяться для импульсной дуговой сварки небольших деталей в самых различных отраслях, таких как электронная промышленность, ремонт и изготовление ювелирных изделий, зубных протезов и т.д.

Запросить цену в 1 клик

Устройство микродуговой сварки Магистр УМД-02

Устройство микродуговой сварки”Магистр-УМД-02 ” предназначено для сварки изделий из металлов и сплавов в среде защитного газа. Оно может применяться для импульсной дуговой сварки небольших деталей в самых различных отраслях, таких как электронная промышленность, ремонт и изготовление ювелирных изделий, зубных протезов и т.д.

От предыдущего поколения расширенными возможностями по управлентю параметрами сварочного импульса, но главным отличием является дополнительный инструмент для контактной сварки, который позволяет несколькими точками надежно зафиксировать свариваемые детали относительно друг-друга. либо «прихватить» к детали присадочный материал.

Запросить цену в 1 клик

Устройство микродуговой сварки Магистр УМД-03

  • Напряжение питания 220В 50Гц
  • Потребляемая мощность, не более 1200 ВА
  • Максимальная энергия сварочного импульса 350 Дж
  • Минимальный ток сврочной дуги 6 А
  • Максимльный ток дуги 300 А
  • Длительность сварочного импульса 1мс — 150 мс
  • Пауза между сварочными импульсами 0,4с
  • Количество фиксированных профилей 10
  • Количество настраиваемых профилей 10

Цена 147 000 руб.

Ручная установка ультразвуковой микросварки TPT HB02

• Кол-во сохраняемых программ: до 20
• Частота ультразвука: 62 кГц
• Мощность ультразвука: 0 – 5 Вт
• Время разварки: 0 – 1 с
• Усилие прижима: 5 – 130 г
• Диаметр катушки: 2” (50.8 мм)
• Диаметр катушки: 50,8 мм
• Угол подачи проволоки или ленты: 90°
• Длина плеча УЗГ: 165 мм
• Размеры: 550 х 450 х 250 мм (Зависит от опций)
• Вес: Брутто 29 кг / Нетто 25 кг (Зависит от опций)

Запросить цену в 1 клик

Ручная установка ультразвуковой микросварки TPT НВ04

• Кол-во сохраняемых программ: до 20
• Частота ультразвука: 62 кГц
• Мощность ультразвука: 0 – 5 Вт
• Время разварки: 0 – 1 с
• Усилие прижима: 5 – 130 г
• Диаметр катушки: 2” (50.8 мм)
• Диаметр катушки: 50,8 мм
• Угол подачи проволоки или ленты: 90°
• Длина плеча УЗГ: 165 мм
• Размеры: 550 х 450 х 250 мм (Зависит от опций)
• Вес: Брутто 29 кг / Нетто 25 кг (Зависит от опций)

Запросить цену в 1 клик

Ручная установка ультразвуковой микросварки TPT НВ05

• Кол-во сохраняемых программ: до 20
• Частота ультразвука: 62 кГц
• Мощность ультразвука: 0 – 5 Вт
• Время разварки: 0 – 1 с
• Усилие прижима: 5 – 130 г
• Диаметр катушки: 2” (50.8 мм)
• Диаметр катушки: 50,8 мм
• Угол подачи проволоки или ленты: 90°
• Длина плеча УЗГ: 165 мм
• Размеры: 550 х 450 х 250 мм (Зависит от опций)
• Вес: Брутто 29 кг / Нетто 25 кг (Зависит от опций)

Запросить цену в 1 клик

Полуавтоматическая установка ультразвуковой микросварки TPT НВ06

• Управление по осям: Моторизованное Z, ручное X-Y
• Длина сварочного плеча: 165 мм
• Автоматическое перемещение по оси Z: до 17 мм
• Глубина вертикального доступа: 15 мм
• Мощность: УЗ 0 – 5 Вт
• Время сварки: 0 – 10 с
• Усилие: 5 – 150 г
• Нагрев столика: 250°C макс
• Питание: 100-240 V, 10 A макс
• Вес: 35 кг

Запросить цену в 1 клик

Полуавтоматическая установка ультразвуковой микросварки TPT НВ08

• Управление по осям: Моторизованное Z, ручное X-Y
• Длина сварочного плеча: 165 мм
• Автоматическое перемещение по оси Z: до 17 мм
• Глубина вертикального доступа: 15 мм
• Мощность: УЗ 0 – 5 Вт
• Время сварки: 0 – 10 с
• Усилие: 5 – 150 г
• Нагрев столика: 250°C макс
• Питание: 100-240 V, 10 A макс
• Вес: 35 кг

Запросить цену в 1 клик

Полуавтоматическая установка ультразвуковой микросварки TPT НВ10

• Управление по осям: Моторизованное Z, ручное X-Y
• Длина сварочного плеча: 165 мм
• Автоматическое перемещение по оси Z: до 17 мм
• Глубина вертикального доступа: 15 мм
• Мощность: УЗ 0 – 5 Вт
• Время сварки: 0 – 10 с
• Усилие: 5 – 150 г
• Нагрев столика: 250°C макс
• Питание: 100-240 V, 10 A макс
• Вес: 35 кг

Запросить цену в 1 клик

Полуавтоматическая установка ультразвуковой микросварки TPT НВ12

• Управление по осям: Моторизованное Z и Y, ручное X
• Длина сварочного плеча: 165 мм
• Автоматическое перемещение по оси Z: до 17 мм
• Автоматическое перемещение по оси Y: до 7 мм
• Глубина вертикального доступа: 15 мм
• Мощность: УЗ 0 – 5 Вт
• Время сварки: 0 – 10 с
• Усилие: 5 – 150 г
• Нагрев столика: 250°C макс
• Питание: 100-240 V, 10 A макс
• Вес: 42 кг

Запросить цену в 1 клик

    Показывать по

Микросварка служит для создания неразъёмного соединения посредством установления межатомных и межмолекулярных связей между особо тонкими (менее 500 мкм) частями изделия. Технология используется в промышленной радиоэлектронике и при изготовлении точных приборов. Микросварка пригодна для герметизации корпусов, мембранных коробок, сильфонов, печатном монтаже, при производстве микросхем, в ювелирной промышленности и т.п.

Существует довольно много методов микросварки, среди которых можно назвать:
• ультразвуковую;
• лазерную;
• контактную;
• конденсаторную;
• холодную;
• термокомпрессионную;
• электроннолучевую.

Технологические и конструктивнее особенности
Основными материалами используемых при микросварке проводников являются легкоплавкие и хорошо проводящие электрический ток золото и алюминий, при этом обеспечиваются два основных типа сварочных соединений: шарик и клин (а также их комбинации).

При термокомпрессионной сварке тепловая энергия в зону контакта подаваться посредством нагрева, как самой платы, так и рабочего инструмента. Так как технологический процесс происходит в режимах, близких к экстремальным, ручной контроль температуры, давления и времени сварки практически исключён, и способ обычно используется только в автоматических установках.

Более распространена ультразвуковая микросварка, в которой используется щадящий режим, и её можно использовать при работе с термочувствительными деталями. Во время операции энергия в зону контакта подаётся в виде ультразвуковых колебаний, причём сила прижима невысока. Под воздействием ультразвука микрочастицы колеблются, что вызывает в точке соприкосновения интенсивный нагрев, который сопровождается деструкцией оксидных пленок. Открытые поверхности физически и химически активны, в результате происходит быстрое соединение материалов на атомарном уровне.

При клиновой сварке проволока по микроскопическому каналу подаётся на острие клина, на наконечнике которого имеется специальная канавка, посредством которой и производится устойчивое соединение. Во время шариковой микросварки перед выполнением соединения на конце проволоки формируется шарик, который приваривается к площадке, причём таким образом можно формировать длинные петли произвольного профиля.

Каждая из технологий имеет свои достоинства и недостатки. Так, клиновая микросварка более функциональна, и может иметь дополнительные опции, что расширяет её применение в промышленной электронике, там, где существует необходимость в повышении значениях жёсткости соединений. Однако движение клина допускается лишь в одном направлении, и если проволока уводится из-под клина, выполнение второго и последующих соединений невозможно.

Этого недостатка не имеет шариковая сварка, однако к её минусам относятся относительно большие геометрические размеры контакта, что не даёт возможности применять метод при высокоплотном монтаже. Второй недостаток – использование только золотой проволоки, что удорожает процесс.

Некоторые из серийно выпускаемых устройств в рамках единой конструкции объединяют оба метода, что позволяет выбрать наиболее подходящий в конкретной ситуации. Следует отметить, что при всей внешней простоте процессов, микросварка иногда требует специальных мер для повышения качества соединений. Например, очень хорошие результаты даёт предварительная активация поверхности посредством плазменной обработки.

Там, где требуется обеспечить сварное соединение разнотипных материалов, таких, как вольфрам-никель, платина-родий и т.п. особенно эффективна лазерная микросварка импульсным излучением зеленой части спектра. К её важным достоинствам относится то, что процесс не нуждается в предварительной очистке поверхности от тонкоплёночной изоляции. Интересно, что этот вид микросварки может использоваться для проведения операций в герметично запаянных прозрачных корпусах, например, для ремонта дефектных вакуумных электронных приборов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector