Tehnik-ast.ru

Электро Техник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

A358f что за микросхема

A358f что за микросхема

СмартПульс — держите руку на пульсе высоких технологий! Новости, статьи, обзоры мобильных устройств, компьютеров, комплектующих, радиолюбительских конструкций

Главная — DIY (Радиолюбителям) — Плата контроллера внешнего аккумулятора ( power bank) — тест и обзор

Плата контроллера внешнего аккумулятора (power bank) с Алиэкспресс — тест и обзор

Обзор посвящен плате (модулю) контроллера внешнего аккумулятора ( power bank) напряжением выхода 5 В и током до 0.8 А.

В обзоре будут приведены его технические характеристики, кратко описана схемотехника, сделаны тесты, представлены осциллограммы, сделаны полезные выводы и даны рекомендации по практическому применению.

(изображение с официального сайта AliExpress )

Перед тем, как привести технические параметры тестируемого модуля power bank, несколько слов о его "начинке".

На изображении с официального сайта видно, что в модуле применена микросхема SW2808S. Найти её характеристики не удалось, но удалось найти характеристики её полного аналога — микросхемы HT4928S .

Эта микросхема производится китайской компанией "Hotchip" , характеристики (datasheet) HT4928S можно посмотреть на официальном сайте компании "Hotchip" ( PDF, китайский язык).

Именно на этих характеристиках и основана последующая таблица.

Плата контроллера внешнего аккумулятора (power bank)- технические характеристи ки:

Напряжение выхода5.1 В (4.95. 5.25 В)
Максимальный ток выхода0.8 А
Напряжение зарядки4.5. 5.5 В
Ток зарядкидо 0.8 А
Максимальное напряжение заряда батареи4.2 В
УправлениеАвтоматическое включение и выключение
Пороговый ток автоматического включения / выключения60 мА
Ток покоя13 мкА
КПД (при разряде)до 91%
Частота преобразования1 МГц
ЗащитаОт перезаряда, переразряда, перегрузки по току и др.
Размер платы21 x 17 x 11 мм (Д х Ш х В)

Цена на Алиэкспресс на момент составления обзора — около 200 российских рублей ($2.7) за 5 шт. (!) с учетом доставки в РФ (ссылка). Цена может меняться в любую сторону.

Теперь приступим к детальному изучению объекта обзора.

Внешний вид и констру кция платы (модуля) power bank

Плата стоит настолько дёшево, что по одиночке её даже и не продают. Купить можно только комплект сразу из пяти штук, и всё равно получается недорого.

плата контроллера (модуля) power bank с Алиэкспресс

(кликнуть для увеличения)

Сразу столько контроллеров нам не надо. Поэтому выламываем одну штуку; далее её и будем всесторонне тестировать.

Так выглядит верхняя часть платы с выходным полноразмерным разъёмом USB :

контроллер power bank - тест и обзор

Кроме разъёма USB здесь расположен только ещё один элемент: миниатюрный светодиод (красный цвет свечения) в корпусе SMD (для поверхностного монтажа).

Рассмотрим эту сторону вертикально сверху:

модуль power bank - тест и обзор

Здесь хорошо видно, что на плате есть два посадочных места под светодиоды ( LED1 и LED2) , но реально припаян только один ( LED2). Сэкономили!

Теперь взглянем на обратную сторону, самую насыщенную элементами:

плата power bank - тест и обзор

Здесь (снизу вверх) расположены: разъём микро- USB ( для зарядки), микросхема контроллера (без маркировки) и её обвязка, дроссель схемы повышения напряжения.

Схема этого контроллера power bank — проста, как хозяйственное мыло (взята из документации на микросхему):

Схема контроллера power bank на микросхеме ht4928s (SW2808S)

На схеме надо обратить внимание, что вход и выход запараллелены, т.е. являются одновременно и тем, и другим. Микросхема — "умная", и сама разбирается, отдавать ей энергию или принимать. 🙂

Такая схема хороша тем, что плата может работать в режиме "сквозной зарядки", то есть можно зарядным устройством одновременно и заряжать аккумулятор, работающий с этой платой, и питать устройство, подключенное к плате.

Но есть "тонкость": в этом случае зарядное устройство должно быть рассчитано на ток выхода, способный одновременно обеспечить двух потребителей энергии. То есть, предельный ток зарядного устройства желателен не менее, чем в 1.6 А.

И, наконец, посмотрим на всю систему (power bank) вместе с аккумулятором в сборе в процессе зарядки:

В качестве аккумулятора для этого повербанка использован оставшийся в живых аккумулятор от сгоревшего планшета.

Светодиод светится непрерывным красным светом при работе на нагрузку и по окончании процесса заряда аккумулятора; в течение самого процесса заряда мигает примерно раз в секунду.

Кроме того, светодиод мигает ещё в двух случаях: если ток нагрузки недостаточен для стабильного включения устройства (менее 55 мА); а также, когда заряда в аккумуляторе осталось менее 10% (частые мигания).

Испытание модуля power bank

Осциллограммы снимались с вывода 6 микросхемы (т.е. точки соединения микросхемы с индуктивностью).

Осциллограммы снимались при трёх значениях тока: ниже порога автоматического включения, немного выше порога включения, вблизи максимально-допустимого тока выхода.

Осциллограмма # 1 — ток выхода выше нуля (35 мА), но ниже порога стабильного включения повербанка (55 мА):

Осциллограмма на дросселе power bank

На осциллограмме видно, что при таком токе нагрузки power bank периодически то включается, то выключается. Иными словами — режим не рабочий.

Осциллограмма # 2 — ток выхода равен 56 мА, что немного (на 1 мА) выше порога включения:

Осциллограмма на индуктивности power bank

На осциллограмме заметна небольшая "полочка", когда микросхема проявляет желание уйти в режим покоя. Но всё-таки она этого не делает; режим — полностью рабочий.

Осциллограмма # 3 — ток выхода равен 700 мА, что близко к максимально-допустимому току выхода (800 мА):

Осциллограмма на индуктивности power bank

На этой осциллограмме — классическая картина для повышающего преобразователя с индуктивностью. Хоть в учебники вклеивай!

Читайте так же:
Измельчитель веток своими руками для отопления чертежи

Теперь — результаты замеров.

Ток стабильного перехода во включенное состояние — 55 мА.

Ток срабатывания защиты от перегрузки по выходу — 1.2 А. После срабатывания защиты для восстановления работоспособности необходимо полностью снять нагрузку (просто снизить её — не достаточно).

Максимальное напряжение, до которого заряжается подключенный аккумулятор — 4.16 В.

Минимальное напряжение, до которого разряжается аккумулятор — 3.0 В

Ток потребления холостого хода — 9.5 мкА

Окончательный диагноз модуля (контроллера) power bank (внешнего аккумулятора)

Протестированная миниатюрная плата power bank показала себя с наилучшей стороны, полностью подтвердив заявленные параметры.

В целом плата подходит для создания и ли ремонта power bank- ов (внешних аккумуляторов) и систем автономного питания небольшой мощности для устройств с напряжением 5 В и током до 0.8 А.

В качестве недостатка следует упомянуть, что различных модных систем "быстрой зарядки" протестированный модуль не поддерживает.

При выборе контроллера для power bank- а пользователю необходимо особое внимание уделить минимальному току нагрузки, при котором он сохраняет работоспособность. Многие маломощные устройства (наушники, смарт-часы и т.п.) с малым током потребления могут отказаться заряжаться от внешнего аккумулятора со слишком большим током включения (либо зарядятся не полностью). Для таких устройств необходимо внимательное изучение технических параметров и/или обзоров (если они есть).

Где купить: например, у этого продавца на AliExpress ( $ 2.7 за 5 шт. с доставкой). Если у других продавцов эта же плата будет стоить дешевле, то тоже можно брать (товар одинаковый, но следите за стоимостью доставки!).

Вступайте в группу SmartPuls.Ru Контакте! Анонсы статей и обзоров, актуальные события и мысли о них.

Искренне Ваш,
Доктор
17 апреля 2020 г.
Последнее обновление страницы — 16.03.2021.

Порекомендуйте эту страницу друзьям и одноклассникам

В комментариях запрещены, как обычно, флуд, флейм и оффтопик.
Также запрещено нарушать общепринятые нормы и правила поведения, в том числе размещать экстремистские призывы, оскорбления, клевету, нецензурные выражения, пропагандировать или одобрять противозаконные действия. Соблюдение законов — в Ваших же интересах!

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

переделка блока ШИМ UC3843

Продолжая серию статей о самодельных лабораторных блоках питания, нельзя пройти мимо компьютерных блоков в основе которых лежит ШИМ контроллер серии UC38хх. В большинстве современных фирменных блоков ПК используется именно эта микросхема, что в перспективе позволяет своими руками создавать надежные и мощные источники питания. Сегодня у нас переделка компьютерного блока питания в лабораторный на ШИМ UC3843, подопытным блоком станет INWIN POWER MAN IP-S350Q2-0.

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Основные элементы блока питания INWIN POWER MAN IP-S350Q2-0:

  • ШИМ — UC3843;
  • Держурка — DM311;
  • Супервизор — WT7525 N140.

INWIN POWER MAN IP-S350Q2-0

Ниже представлена принципиальная схема блока питания INWIN POWER MAN IP-S350Q2-0, с которой нам предстоит работать.

схема INWIN POWER MAN IP-S350Q2-0

Переделка такого компьютерного блока питания в лабораторный будет происходить в несколько этапов:

  1. Отключение супервизора WT7525 N140.
  2. Небольшие изменения в дежурке для питания вентилятора.
  3. Удаление лишних компонентов.
  4. Изготовление нового модуля управления блоком.
  5. Установка новых компонентов на плату и подключение модуля.
  6. Тесты.

Отключение супервизора WT7525 N140

Супервизор WT7525 N140 производит мониторинг напряжения на шинах блока, отслеживает перегрузку, отвечает за пуск и аварийную остановку. Для его отключения необходимо произвести два простых действия.

Отключение WT7525 N140

  1. Удаляем супервизор с платы и ставим перемычку от второго к третьему посадочному выводу микросхемы.супервизор WT7525 N140
  2. Удаляем конденсатор дежурки С32. Если этого не сделать, будут наблюдаться проблемы со стартом блока. Если все прошло успешно — блок будет запускаться автоматически при включении в сеть. Стоит также отметить, если С32 неисправен, блок будет стартовать с ним, но, его присутствие дает помехи, добиться нормальной работы блока невозможно.переделка INWIN POWER MAN

Модификация дежурки для питания вентилятора 12 В

Выходное напряжение в блоке будет меняться в широком диапазоне, а питание 12 В штатного вентилятора должно быть неизменным. В INWIN POWER MAN IP-S350Q2-0, да и в большинстве блоков на ШИМ UC38хх присутствует лишь одна ветка дежурки 5 В. Существует несколько вариантов решения данной проблемы:

  1. Внесение изменений в схему дежурки.
  2. Установка дополнительного ac-dc преобразователя 220-12 В.
  3. Установка дополнительного dc-dc повышающего преобразователя 5-12 В.

Последние два варианта не нуждаются в описании из-за своей простоты включения. Мы же рассмотрим более интересный вариант.

переделка дежурки

Добавляя диод 1N4007 мы создаем отрицательную ветку дежурки, амплитуда импульсов проходящих через новый диод составит около 12 В, но при подключении вентилятора проседает до 10 В. При 10 В вентилятор способен работать, но поток воздуха немного слабоват, при желании можно оставить и так.

Чтобы добиться оптимальной работы вентилятора, необходимо немного поднять напряжение дежурки. Для этого удаляем R46 и изменяем (уменьшаем) R73 с 2 кОм до 1,5 кОм. Таким образом, напряжение на выходе дежурки будет 6 В (выше 8 В поднять не получится), а напряжения для питания вентилятора будет находится в пределах 12-13 В.

Удаление лишних компонентов

Для дальнейшей переделки нам необходимо избавиться от ненужных шин, обвязки супервизора и др. компонентов, которые не будут задействованы в блоке.

Читайте так же:
Измерение esr конденсаторов своими руками

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

После удаления деталей, нужно изменить:

  1. Нагрузочный резистор R8. Ставим новый на 390 Ом мощностью 5 Вт. Он легко встанет на место выходного электролита по шине 12 В.
  2. Выходной конденсатор С7, устанавливаем емкостью 2200 мкФ х 35 В.
  3. Перематываем дроссель групповой стабилизации, оставляем лишь одну обмотку. Для расчета параметров дросселя можно использовать программу DrosselRing (детально ознакомиться с ней можно тут). Эта программка насчитала нам 20 витков провода с сечением 1 мм на родном дросселе.

Как раз на данном этапе в самый раз задуматься о стойках для размещения платы нового модуля управления блоком.

переделка компьютерного блока питания

Модуль управления блоком на ШИМ UC3843

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843 невозможна без изготовления небольшой платы, которая будет контролировать работу UC3843.

регулировка напряжения и тока UC3843

За основу взята микросхема LM358, в своем корпусе она имеет два независимых операционных усилителя. Один будет отвечать за стабилизацию напряжения, второй за стабилизацию тока. В качестве датчика тока используется шунт R0 из константана, сопротивлением 0,01 Ом. Обратная связь с ШИМ выполнена через штатную оптопару PC817, которая переместилась на модуль. Источником опорного напряжения служит TL431.

На новой плате присутствуют два светодиода, которые будут сигнализировать о режиме работы блока. Свечение led1 будет свидетельствовать о том, что блок работает в режиме стабилизации напряжения, led2 загорится при переходе в режим ограничения тока. Сам модуль управления не содержит дефицитных компонентов и не требует дополнительной наладки после изготовления. Расчеты обвязки LM358 произведены для выходных параметров 0-25 В и 0-10А.

Вот так выглядит плата модуля для нашего самодельного лабораторного блока питания.

LM358 UC3843

Печатку для ее изготовления в формате lay можно будет скачать в конце статьи.

плата управления UC3843

Также желательно оставить небольшой запас текстолита для крепления модуля к стойкам. На схеме и плате для удобства расставлены буквенные обозначения точек подключения.

Подключение модуля к блоку

Используя нижеприведенную схему, подключаем все точки модуля управления к основной плате блока.

лабораторный блок питания UC3843

Назначения точек подключения:

  • А и В — выходы оптопары для управления ШИМ;
  • C — питание модуля 6 В;
  • D — плюс выхода блока;
  • E — общий минус;
  • F — минус выхода блока.

лабораторный блок питания UC3843

Настройка блока и тесты

После подключения платы можно проводить первое пробное включение в сеть. Достаточно проверить работоспособность регулировки напряжения и тока. Нагружать блок на этом этапе по полной не стоит, достаточно убедиться в стабильности его работы.

переделка блока ШИМ UC3843

В работе блока могут присутствовать небольшие писки, похожие на тонкий свист. Для их устранения необходимо внести небольшие корректировки в обвязку ШИМ:

  1. Увеличение емкости конденсатора С26 с 2,2 нФ до 220 нФ.
  2. Корректировка резистора R15. R15 желательно подбирать экспериментальным путем на максимальном токе. С уменьшением R15 писк будет постепенно стихать, но, в один момент UC3843 сама начнет ограничивать ток, проходящий через ключ Q8. Экспериментально значение R15 удалось получить в районе 2,2 кОм, при этом UC3843 еще не ограничивает ток, а писка практически не слышно.

писк UC3843

Все манипуляции с обвязкой ШИМ необходимо проводить максимально осторожно. Некоторые элементы находятся под опасным для жизни напряжением. У нас не получилось с первого раза побороть все посторонние звуки в блоке, некоторые эксперименты закончились частичным, а потом и полным выходом из строя блока, пришлось найти второй такой-же и продолжить переделку.

И так, финишные тесты после всех корректировок. В процессе сборки произошла небольшая заминка с цветом светодиодов, красный сигнализирует о работе в режиме стабилизации напряжения, а зеленый — режим ограничения тока. В дальнейшем исправим, сделаем все как у людей:

  1. Напряжение: 0 — 25 В.блок питания 0-25в
  2. Ток: 0 — 10 А.блок питания 0-10А

После всех манипуляций переделка компьютерного блока питания в лабораторный на ШИМ UC3843 окончена! Последним этапом станет оформления корпуса и установка резисторов точной настройки тока и напряжения (подключаем последовательно с основным регулятором, номинал 10% т.е. 1 кОм). Также, корпус блока желательно отключить от общего минуса, чтобы избежать случайного КЗ в обход датчика тока (для этого достаточно убрать перемычку).

переделка компьютерного блока

Приносим благодарность Виталию Ликину за изготовление прототипов наших идей и предоставленные фотоматериалы. Мы еще добавим финишный вариант оформления блока и его краш-тесты. Как и обещали, ссылка платы модуля управления в формате lay.

Проверка микросхем мультиметром: инструкция и советы

Чтобы проверить микросхему радиолюбители используют такие устройства, как мультиметры, специальные тестеры, осциллографы. Однако в простых случаях вполне можно и без всего вышеперечисленного. Для успешной проверки необходимо хотя бы примерно знать устройство микросхемы, какие сигналы и напряжения должны поступать на ее входы и формироваться на ее выходах. Рассмотрим вероятные сценарии проведения проверочных работ.

Проверка микросхемы на исправность

Способы проверки

Существует несколько способов, позволяющих проверить микросхему на работоспособность.

Внешний осмотр

Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.

Проверка работоспособности с помощью мультиметра

Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.

Читайте так же:
Как отрегулировать зажигание на бензопиле штиль 180

Проверка работоспособности микросхемы с помощью мультиметра

Выявление нарушений в работе выходов

Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.

Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.

Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.

Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.

Влияние разновидности микросхем на способы проверки

Способ и сложность проверочных работ во многом зависит от типа схемы:

Микросхемы с тремя выводами

  • Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе. На основании этих измерений делается вывод об исправности системы.
  • Более сложные для проверки – микросхемы серий К 155, К 176. Для проверочных мероприятий понадобятся: колодка и источник питания с определенным уровнем напряжения, который подбирается под конкретную систему. На вход подается сигнал, контролируемый на выходе с помощью мультиметра.
  • При необходимости проведения более сложных проверок используют не мультиметры, а специальные тестеры, которые можно собрать самостоятельно или купить в магазине радиоэлектроники. Тестеры позволяют проверить прозвонкой исправность отдельных узлов схемы. Данные проверки обычно отображаются на экране тестера, что позволяет сделать вывод о работоспособности отдельных элементов устройства.

При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.

Крабовые Ручки ♋ Almois Jobbing Official

Журнал о технических устройствах и технологиях. Ковыряние в бытовой технике, электронике: что внутри, как это работает, опыт эксплуатации. Выбор лучшего товара — отзывы, достоинства и недостатки. ПоДЕЛОчная: ремонт (техники, электроники) своими руками, сделай сам, самоделки. Полезные советы, лайфхаки.

Крабовые ручки | Almois Jobbing Official

Как разобрать, что внутри, схема светодиодной лампы Lexman E14 5.5 Вт

Вслед за сенсационной, нашумевшей на весь мир статьёй «Как разобрать и что внутри светодиодной лампы», в которой было показано, как разобрать лампочку от Lexman (бренд Леруа Мерлен) типа «свеча», но с цоколем Е27, настало время показательного вскрытия похожей, но как будет видно ниже совершенно из других компонент состоящей, лампы типа «миньон» с цоколем Е14.

Lexman LED E14 5.5W - обзор лампы светодиодной типа миньён, разобрка, что внутри

Фото 1. Светодиодная лампа Lexman E14, 5.5 Вт из Леруа Мерлена

Стоила эта лампа 80 руб ($1.2), ни разу не сломалась, но любопытство требует жертв.

Как разобрать

Инструкция по разборке в виде комикса:

E14 LED lamp disassembly. Разборка, что внутри светодиодной лампы типа миньон от Lexman Леруа Мерлен. Пошаговая инструкция, как отсоединить плафон, извлечь, разобрать

Илл 1. Фото-инструкция по разборке светодиодной лампы

Пару слов про происходящее на этой иллюстрации:

    Чтобы оторвать матовый колпак, плафон, нужно как бы сломать лампу пополам. Т. е. обхватить двумя руками (лучше без перчаток, чтобы ладони своей естественной липкой кожей крепко вцепились в пластик) плафон и другую половину лампы и большими пальцами упереться в середину, в стык, создав давление на излом. Вообще говоря, плафон приклеен белым каучуковым герметиком, но очень непрочно.

Плафон имеет уступ,

Плафон, матовый колпак светодиодной лампы - как крепится, защёлка, клей

Фото 2. Матовый плафон можно не приклеивать — есть защёлка

благодаря которому он защёлкивается в основание (так что клей-герметик здесь, в общем-то, и не нужен) и при обратной сборке приклеивать его не нужно.

    Центральный контакт — просто кнопка с зазубринами, которая механически прижимается к контакту адаптера питания.

Цоколь тоже можно стащить с пластикового основания путём переламывания-расшатывания.

Читайте так же:
Как собрать снегоход из бензопилы

Цоколь не приклеен и может слететь уже во время этапа 1, когда пытаемся снять плафон, если правая рука надавит на цоколь, а не на основание.

Алюминиевая площадка со светодиодами и драйвером сзади приклеена каким-то типа резино-силиконовым клеем-герметиком. С помощью ножа/скальпеля прорезаем по кругу. (Позже выяснилось, что проще соскрести его отвёрткой с плоским шлицем.)

Вытаскиваем блок электроники из корпуса-основания лампы пассатижами. (Или лучше протолкнуть/выдавить металлическим стержнем с обратной стороны.) Это делается со значительным усилием, т. к. подложка светодиодов вставлена/защёлкнута в паз металлизированного изнутри корпуса.

Метализация основания светодиодной лампы накаливания

Фото 3. Корпус пластиковый с металлизацией изнутри

Так это сделано для того, чтобы алюминиевая пластина подложки светодиодов плотно прилегала к корпусу и передавала тепло ему для дальнейшего охлаждения.

  1. Драйвер (плата питания) соединён с подложкой со светодиодами разъёмами, которые не припаяны. Часовой отвёрткой отгибаем пластинки, вытаскиваем плату блока питания, затем подгибаем пластинки обратно, если хотим собрать обратно.

Наблюдать процесс разборки (и потом сборки) в динамике, а также процесс ремонта этой лампочки путём замены перегоревшего светодиода, можно на этом видео: «Ремонт светодиодной лампы: замена светодиода». Видео о том, как перегорает светодиод в этой лампе (это длительный процесс, как оказалось): «Как ПЕРЕГОРАЕТ светодиодная лампа».

Светодиодный драйвер

Итак, по вскрытии мы поимели электронную плату, блок питания:

Преобразователь напряжения 220 постоянного тока стабилизатор из светодиодной лампы

Фото 4. Плата драйвера со стороны крупных деталей

Преобразователь напряжения/тока основан на микросхеме стабилизатора тока BP9938F ([краткий даташит] или [полный даташит на китайском]) с обвязкой.

Драйвер LED, адаптер, блок питания внутри светодиодной лампочки на 9938F

Фото 5. Плата драйвера со стороны чип-деталей и дорожек

Без нагрузки он выдаёт 300 вольт DC, но это формальное напряжение; оно, в зависимости от типа нагрузки, проседает до уровня соответствующего закону Ома или вольт-амперной характеристике диодов, при заданном уровне силы тока, фиксацией-стабилизацией которого занимается микросхема BP9938F, и величина которого определяется номиналом сопротивления R1-R2 (который в даташите называется current sensor — датчик тока).

Схема драйвера

Собственно, вот вам схема всего этого безобразия, со всеми номиналами:

Схема электрическая принципиальная светодиодной лампы Lexman E14 5.5 Вт

Схема 1. Конкретная реализация драйвера на BP9938F

Сопротивление резистора Rcs (R1-R2) здесь 2.7Ω, и это задаёт микросхеме BP9938F стабилизировать выходную силу тока на уровне 70 мА. Замеры параметров работы светодиодов (ток/напряжение) показали следующее:

Какие светодиоды внутри лампы миньон

Фото 6. Какие светодиоды стоят в Lexman E14 5.5W

8 светодиодов, соединены последовательно, на выводах всех — 70 вольт, на каждом по 8.75, ток через все/каждый — 70 мА, итого — 4.9 ватта. Измерение ваттметром потребления с электросети конкретно этой лампы показало 5.1 Вт (у других таких же лампочек имеют место быть варианты: 5.3, 5.2). Стало быть, 0.2 ватта потребляет драйвер, его КПД — 96%. То, что падение напряжения на светодиодах составляет 9 вольт означает, что они составные: внутри три последовательно соединённых светодиода.

Е14 v.s. E27

Сравним с лампой с цоколем E27 такого же цвета (4200К), производителя (Lexman), мощности и формы [из предыдущего поста]:

Сравнение устройства двух светодиодных ламп типа свеча, миньён, с цоколями е14 и е27 от Lexman

Фото 7. Сравнение похожих светодиодных ламп Lexman с разными цоколями Е14 и Е27

Вообще всё разное (светодиоды, микросхем драйвера, корпуса). при том, что светят совершенно одинаково (по цвету, спектру, яркости). И мне не понравился этот цвет: зеленушно-желтушный какой-то, что хорошо заметно на контрасте с естественным дневным светом из окна, если включить их днём. Так же ещё и CRI у обеих ламп не очень-то высок по современным меркам — 85.

Полезные ссылки

    — публикация на сайте ЛампТест.ру — видео на Ютубе про то как светит эта лампа в сравнении с тем, что можно купить на Алиэкспрессе — видео на Ютубе о покупке этих LED и сравнение их цвета/света с другими.

Update 08/15/2020

Оказывается, эти светодиодные лампы умеют перегорать, вот так:

Как перегорает светодиодная лампа, как горит светодиод

Фото 8. Обугленные светодиоды, лампа не светит

Сначала на одном светодиоде появляется обугленная точка, потом обугливание начинает распространяться, ползти в стороны вплоть до того, что выползает за пределы светодиода, так что гореть начинает каким-то непонятным образом плата на алюминиевой подложке. При этом все остальные светодиоды продолжают светить. Потом начинает гореть следующий светодиод и так до тех пор, пока один из них не разомкнётся от сгорания, после чего перестают светить все, т. к. они включены последовательно.

LM386 – характеристики, распиновка, описание. Схема простого усилителя на LM386

В этом этой статье мы расскажем вам, как построить схему усилителя звука на микросхеме LM386. Это недорогой аудио усилитель способный работать практически с любым небольшим динамиком. Несмотря на простоту и размер схемы, звук от усилителя на LM386 достаточно громкий.

Существует множество схем усилителей звука, разработанных с использованием микросхемы LM386. Основная проблема в этих схемах — это шум и помехи. Шум от схемы усилителя, разработанной в этом проекте, значительно меньше, и, если он собран на правильной печатной плате, он станет отличным усилителем звука.

Усилитель звука с использованием LM386 представляет собой цепь с низким энергопотреблением, которая может обеспечивать максимальную выходную мощность 1 Вт и может быть использован в различных устройствах связанных со звуком, таких как портативные колонки, колонки для ноутбука и т. д.

Читайте так же:
Зарядка аккумулятора для шуруповерта 12 вольт

Чтобы собрать данный усилитель нам понадобиться:

  • Микросхема усилителя звука LM386
  • Конденсатор 1000 мкФ
  • Конденсатор 100 мкФ
  • Конденсатор 10 мкФ
  • Конденсатор на 0,05 мкФ (два керамических конденсатора на 0,1 мкФ, соединенных последовательно)
  • Потенциометр 10 кОм (для регулировки громкости — мы не подключали это)
  • Резистор 10 Ом (1/4 Вт)
  • Динамик 4 Ом
  • Блок питания 12В

Принципиальная схема усилителя звука LM386

Принципиальная схема усилителя звука LM386

Описание LM386

LM386 — это универсальная интегральная микросхема усилителя звука класса AB, которую можно использовать в самых разных устройствах. Микросхема LM386 применяется уже несколько десятилетий и до сих пор используется в качестве усилителя в компьютерных колонках и портативных стереосистемах.

LM386 — это низковольтный усилитель мощности с неактивной потребляемой мощностью 24 мВт, что делает его пригодным для приложений с батарейным питанием. Самым распространенным корпусом для LM386 является 8-контактный DIP. На следующем рисунке показана схема распиновки микросхемы LM386.

Распиновка LM386

Распиновка LM386

Из распиновки (вид сверху) видно, что LM386 — это простая ИС усилителя, требующая минимального количества внешних компонентов. В следующей таблице показаны функции каждого вывода LM386.

Контакты 1 и 8 являются выводами регулировки усиления. По умолчанию коэффициент усиления LM386 установлен на уровне 20. Когда конденсатор подключен между выводами 1 и 8, он обходит внутренний резистор (который отвечает за установку коэффициента усиления 20) и увеличивает коэффициент усиления до 200.

Контакты 2 и 3 являются инвертирующими и неинвертирующими входами усилителя (внутри они подключены к операционному усилителю). Через эти выводы подается входной аудиосигнал с таких устройств, как микрофон, мобильные телефоны, ноутбуки и т. д.

Примечание: инвертирующий вход (контакт 2) LM386 обычно подключается к земле.

Контакты 6 и 4 являются контактами питания. Максимальное питание для LM386 составляет 15 В. В нашем случае мы использовали источник питания 12 В.

Контакт 7 задает путь для развязки, и конденсатор должен быть подключен между контактом 7 и землей. Контакт 5 является выходным контактом. Перед подключением выхода к динамику необходимо выполнить надлежащую фильтрацию, поскольку любой сигнал постоянного тока может привести к необратимому повреждению динамика.

Функциональная блок-схема LM386

Функциональная блок-схема LM386

Функционально микросхему LM386 можно разделить на усилитель, управление усилением, байпас, питание и выход. На следующем рисунке показана функциональная блок-схема LM386.

Конструкция схемы усилителя звука на LM386

Конструкция схемы усилителя звука LM386 очень проста. Сначала подключите выводы питания (контакты 6 и 4) к 12 В и заземлению соответственно. Обратите внимание, что максимальное напряжение источника питания для LM386 должно составляет 15 В.

Далее нам нужно подключить вход. Вход может быть получен от любого аудио источника, такого как мобильный телефон или микрофон. Мы подали аудиовход с мобильного телефона через разъем 3,5 мм.

ПРИМЕЧАНИЕ. Простой разъем 3,5 мм (без микрофона) имеет три контакта: левый канал, правый канал и заземление. Поскольку LM386 является моно усилителем, то нам необходимо выбрать либо левый канал, либо правый и контакт земля.

Простой разъем 3,5 мм

Если мы хотим контролировать уровень входного сигнала, нам необходимо подключить потенциометр сопротивлением 10 кОм к входу. Так как мы собираем этот проект на макете, мы не стали подключать его.

Дополнительно можно подключить небольшой конденсатор последовательно с входом для фильтрации постоянно составляющей.

По умолчанию в LM386 коэффициент усиления составляет 20 (без какой-либо схемы регулировки усиления). Мы подключим конденсатор 10 мкФ к выводам регулировки усиления, то есть контактами 1 и 8. Следовательно, коэффициент усиления теперь равен 200.

Хотя в datasheet LM386 говорится, что обходной конденсатор на контакте 7 не является обязательным, мы обнаружили, что подключение конденсатора емкостью 100 мкФ было действительно полезным, поскольку оно помогает снизить шум.

Наконец, к выходу сначала подключите конденсатор 0,05 мкФ и резистор 10 Ом последовательно между выходом (контакт 5) и землей. Это формирует Zobel Network — фильтр, состоящий из последовательно соединенных резистора и конденсатора.

Далее идет подключение динамика. LM386 может управлять любым динамиком с сопротивлением от 4 Ом до 32 Ом. Мы использовали динамик 4 Ом. Подключение динамика через большой конденсатор емкостью 1000 мкФ было действительно полезным, поскольку оно отфильтровывало ненужные сигналы постоянного тока.

Работа схемы усилителя звука LM386

Простой, но эффективный усилитель звука разработан с использованием ИС усилителя звука LM386. Работа схемы очень проста, так как вся работа выполняется самой микросхемой LM386.

Когда на схему подано питание и на вход подается соответствующий аудиовход, LM386 усиливает входной сигнал в 200 раз и приводит в действие выходной динамик.

Одной из основных проблем с усилителями звука, такими как LM386, является шум. Удивительно, но несмотря на то, что схема построена на макете, из динамика было очень мало шума.

Область применения

LM386 является одной из важных микросхем в аудио сегменте и применяется в портативных колонках и колонках ноутбука.

Схема усилителя звука LM386 может использоваться для записи голоса с микрофона, создания небольших динамиков с батарейным питанием, в FM-радиоустройствах и т. д.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector